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Foreword

Today’s world produces ever increasing amounts of data which, when
used properly, can provide insights that were not possible before. While
these insights are helpful, the process that leads to them, which often
involves statistical analyses, can look so intimidating so much so that
many will not even try to use this treasure trove of data available at
their fingertips. Moreover, it can be even dangerous to use insights that
were improperly derived from the data. I, for one, believe that quanti-
tative analysis and statistics should be approachable, for which reason
I have began developing this book, available for free to everyone, and
the associated resources. I built these resources from the point of view
that while deep understanding of how a statistical test works and what
it does requires deep understanding of mathematics and probabilities,
its use to understand a quantifiable phenomena does not have to be

overwhelming.

This resource, comprised of a written book and an accompanying
website and app?, is designed as an accessible source of information and
support to everyone interested in designing and conducting quantitative
studies. It tries to hide the math as much as possible and focus on the
application of statistical tests through real life examples, whenever avail-
able. Nevertheless, the book is not intended for absolute beginners as
introductory knowledge of statistics and probabilities that helps readers
make the most out of the content is not included. The material pre-
sented assumes the readers have at least a basic understanding of basic
statistics principles.

The the book and its associated ecosystem is intended from start
to be under perpetual improvement through new and updated content,
functionality, and tools. For this reason the My Research Lab website?
will always provide the most up to date content, both online and in
printable format.

The book covers a few concepts fundamental to the understanding of
quantitative methods, offers guidance for the design of the study, and
offers guided and annotated examples for statistical analysis tests. For

3 App will be available at a later time.

4https://myrelab.com
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each of the analyses presented the focus is on application rather than
on theory. These examples are not definitive and complete guides but
rather a use case as the analysis is applied to a specific study. Because
each study has its own specific characteristics, readers are strongly en-
couraged to consult as many resources specific to their application and
situation as necessary to make informed decisions. The website offers
access to a set of tools® to help design quantitative research studies,
as well as access to the R code that powers the statistical analyses pre-
sented in the book and the associated curated datasets. In the future, as
time and resources allow, the website will provide access to interactive
Jupiter Notebooks® or similar tools in both R and Python for each of
the example statistical analyses. Additional, more personalized, direct
support may be available in the future. In the mean time, just drop me

a line.

It is my hope that this resource will grow with the help of other
researchers willing to share their work by converting their quantitative
studies into guided examples or case studies that can be then added
to the book. Therefore, I invite everyone interested in sharing their
research to help others to contact me. I will serve as guide and editor
through the process and the example will be published under the original
author’s name.

The resource is under development and will be a work in
progress for the foreseeable future. It is not intended to ex-
haustive, but rather serve as a guide to applied quantitive re-
search.

The book is developed using the R software environment for statis-
tical computing” augmented by additional packages and software appli-
cations. The RMarkdown® and Bookdown? packages are used to weave
the text with the R code. This setup makes possible to update at the
same time all written content, in all formats, from a single source of
truth.

A big thank you to those who helped develop this resource this far.
Special thanks to Dr. Mugur Geana and Dr. Dan Cernusca for their
continued support.

5 Such as sample size calculators, helper
tools for selecting the appropriate sam-
ple size, and so forth.

Shttps://jupyter.org/

"https://www.r-project.org

8https://rmarkdown.rstudio.com/

9 https://bookdown.org/
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A Few Words About Causality

Causality is pervasive and ubiquitous. It helps build intellectual under-
standing, supports deliberations, is involved in planning, in technology,
and even in language!®. It is part of everyday decisions, requiring impli-
cations and consequences to be considered in the process of evaluation
and judgment. Causality is also a construct of intelligence. In Wesley
C Salmon’s words (Salmon 1998):

“If there had never been any human or other intelligent beings, there
never would have been causes and effects - that is to say, there never
would have been causal relations - in the physical universe the events
would occur, but the causal relations would not exist.” (p. 8)

The understanding of causality is critical to the understanding of
scientific research and everything that comes with it: research design,
analysis, interpretations. This is because the drive to understand causal-
ity is deeply rooted in people’s need to make sense of the world around
them, or to come to terms with it.

More commonly understood, causality represents the relationship be-
tween two or more entities where the behavior of one or more of them
determines the behavior of the other(s). Fundamentally, causality arises
from the empirical relations of:

e C(Contiguity: in space and time;

e Temporal succession: temporal order determines causal priority and
requires the cause to be readily present for the effect to occur. It is
useful in determining which of the two variables that covary is the
cause (the Independent Variable, or IV), and which is the effect (the
Dependent Variable, or DV);

o Constant conjunction: covariation between two variables, which hap-
pen when two objects, constructs, processes, etc. are in constant
(repeat many times) conjunction with each other. That is, for a
causal relation to exist, they have to constantly, repeatedly, show the
same behavior.

10 Words like break or move can serve
as indicators of causal relationships or
events.
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Conjunctive plurality, which states that an effect is rarely the result
of a single cause, was later added as another important attribute to
emphasize the complexity of real-life processes which are the target of
many research studies.

Another way of looking at the fundamental conditions for a causal
relation to exist is that causal relations are durable. They always (or
most of the time) hold true. That is, they are stable, consistent, and
reliable and remain true across time and space and across instances of
the same system (Sloman 2005). Considering that our lives as intelligent
beings are predicated on the ability to predict, we have to be selective!!
and attend to what is stable!?. Finding these durable relations is, in
essence, the purpose of scientific inquiry.

When reasoning about causality it may be helpful to think of it as
two intersecting processes in space and time (Salmon 1998). The inter-
section, while not a causal construct or concept in itself, can help distin-
guish causal phenomena from non-causal ones. At that intersection we
can expect two major types of events: causal interactions and non-causal
intersections. If both processes exit the intersection in a changed state
and that changed state persists beyond the place/time of intersection
we have a causal interaction’. Alternatively, if either or none of the

processes is changed, we are looking at a non-causal intersection'*.

While understanding causality is fundamental to both scientific and
everyday reasoning there are many problems people have when dealing
with causality and causally linked events. It is important for researchers
to be aware that these issues and biases exist and to understand and
make efforts to minimize their impact on a research study. For example,
a few of these problems, relevant to designing research studies, are:

e People have a tendency to favor obvious, localized, simple, linear,
and sequential causal relations;

e People tend to simplify otherwise more complex causal structures, a
process which results in distorted understanding;

e For well-structured problems (for which both states and constraints
are clearly defined) people tend to use strategies that convert the
problem’s elements into computations while, many times, missing the
conceptual underpinnings of the problem and the domain. We should
note though that real-life phenomena, in the social sciences are rarely
well structured!®;

¢ When faced with discordant information people tend to hold onto
their old/existing schemas (their existing understanding) rather than
update them or build new ones. That is, people tend to show resis-
tance to change.

1 Most facts and information are use-
less for a specific decision. Taking
everything possible into consideration
overloads our minds and slows us down.
Therefore, selectivity means that only
those things that carry relevant infor-
mation for the task or decision are to
be considered to make the process fast
and efficient.

12 Stability, or invariance, is fundamen-
tal to the process of prediction because
it highlights the variables that behave
constantly across time and space and
therefore make it easy to infer their fu-
ture values or behavior from their cur-
rent values or state.

13 For example, when a bullet hits a tar-
get, both the bullet and the target are
affected at the point of intersection and
in the future. The target ends up with
a whole and the bullet loses energy.

4 Think of two beams of light that
cross paths and intersect at a point. At
that point they are just superimposed
on each other, but neither affects the
other. After they leave that point, they
continue unaffected.

15 Well structured problems can be eas-
ily converted into procedures that can
be used without much thought and
without understanding the underlying
principles.
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Understanding the concept of causality is valuable to the design of a
research study, experimental or not. For example, for causality to exist,
the cause and effect have to be observed (measured) many times (2 or
3 is not enough), proving that constant conjunction exists and therefore
confirming the potential for the existence of a causal relationship. This
is what, fundamentally, statistical analysis tries to do. Therefore, the
study should be designed so that that is possible. The other attributes
are helpful in guiding the design and interpretation. For example, tem-
poral succession should guide not only the determination of which is the
independent and which is the dependent variable, but also in the selec-
tion of the variables appropriate for the study. Contiguity is also helpful
in the selection and definition of variables and can be used as a check-
point in building the model to be tested. Conjunctive plurality helps
by raising awareness about the fact that many events can participate in
the onset of the effect and is useful in the selection and definition of the
variables used to define the construct being studied.

For a causal relationship to be truly understood, one needs to answer
three questions: what?, why?, how?. The what? questions is answered
through statistical analysis and proves that constant conjunction hap-
pens while the other requirements for a causal relation to exist are met.
The how? and why? questions provide an explanation of the mecha-
nisms at work that underlie the causal relations as well as the reasoning
for the purpose of the relationship and what it means for theory and
practice.

Discovery, understanding, and documentation of causal relationships
is, most of the time, the focus of most research studies that use quanti-
tative approaches to understand concepts, constructs, and phenomena.
This chapter just scratched the surface of a much larger conversation on
causality as it relates to the scientific method reflected in quantitative
research designs. Causality is both the starting point and the end goal of
many statistical analysis methods and can be observed at work through
the theory and practice of statistics. It is construct worth exploring and
understanding and a conversation worth having as it will lead to better
research designs, with higher quality findings. Do not stop here.

11






Variance and Error

Variability is an essential characteristic of the natural world. We see
it everywhere around us. For example, an extreme case is the human
fingerprints, unique to each individual, which makes them useful for
identification purposes. Similarly, maybe not as extreme and dependent
on what is being studied, research participants are different from each
other, differences which introduce variability in the study'®. Due to
this variability, the values obtained from measuring a construct differ
from research participant to research participant. In classical statistical
inference the variance is a measure of how spread out these readings are
from the average of the sample.

The Variance is related to Standard Deviation (SD)'7 which is an
indication of how much variation of or dispersion is in the values of a
sample. A large SD value indicates that the values are spread out from
the mean over a wider range of values while a small SD value indicates
that the values are close together around the mean.

Total variance can be thought of as the sum of two variances: system-
atic (between-groups)'® variance and error (within-group) variance. The
ratio of the two variances can serve as an indication if the differences
between groups are systematic or due to chance.

Systematic (between-groups) variance is the result of the intervention
and any additional confounding variables present in the study. It is the
intent of an experiment to generate variability in the dependent variable
(DV) by manipulating the independent variable (IV). This is the type
of variance research is looking for.

Error (within-groups) or non-systematic variance is the unexplained
variability in the DV. It is usually more of a nuisance and it can be lived
with. It is determined by the random variability between subjects.

Considering that reality is usually described by more than two vari-
ables, there are other variables that can affect systematic variance as
well. Of these, the variables that influence both the IV and the DV
are called confounding variables. Confounding happens when the design

16 For this reason in laboratory experi-
ments researchers attempt to control as
many of the factors that produce vari-
ability as possible. On the opposite side
are studies that embrace variability and
attempt to collect data in the partici-
pant’s natural environment.

17 In mathematical terms, the Standard
Deviation is the square root of Vari-
ance.

8 Do not confuse between-
group/within-group  variance  with
the between-subjects/within-subjects

research designs. See Between-Subjects
vs. Within-Subjects Designs for more
information.
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of the experiment (controls) makes difficult or impossible to eliminate
alternative explanations for an observed cause-effect relationshipl?. In
many situations confounding variables are variables that the experiment
did not account for. They can cause two major issues: increase variance
and introduce bias.

The variability generated by the confounding variables is impossible
to separate from the variability due to the intervention, which makes
the interpretation of the results difficult or impossible. Therefore, any
experimental design should attempt to eliminate any confounding vari-
ables and attempt to produce an as small error variance as possible.

The most effective way to control confounding variables is to use
random assignment of participants to the experimental groups, which
forces all variables other than those studied to create only random (no-
systematic) variance. Random assignment has the effect of transferring

the variance due to confounding to error variance??.

On the other hand, the smaller the error variance, the more power-
ful the design. Therefore, in addition to eliminating any confounding
variables, it is recommended to try to reduce as much as possible the
variance due to error. Here are a couple of accepted ways of reducing

the error variance:

o If possible, hold constant some of the variables instead of randomizing
all variables in the study.

o Increase the size of the sample as error variance is inversely propor-
tional to the number of degrees of freedom?! of the sample.

The concept of variance is closely related to that of error. The follow-
ing are the most significant sources of error in a quantitative research

design:

e Random error - occurs by chance and can be produced by anything
that randomly interferes with measurement;

o Systematic error - is generated by consistent differences between the
measured value and the true value?2;

e Measurement error - denoting the wvalidity and reliability of an in-
strument:

— Validity - the instrument is capable to accurately measure the con-
struct it was designed to measure;

— Reliability - or reproducibility, is the capacity of the instrument to

perform consistently over time and across observers3.

19 For example you run an experiment
that includes the same number of men
and women. The treatment is not
relevant; what is relevant is how the
treatment is applied to the partici-
pants. Consider two groups, a treat-
ment group and a control group. If
only men are assigned to the control
group and only women to the treatment
group, when it comes the time to in-
terpret the results, there is no way to
know if the observed effects are accu-
rate and are only due to the treatment.
In this case, participant’s gender is con-
founding with the treatment, prevent-
ing the researcher to determine if the
effects are due to the treatment only or
the participant gender has also some-
thing to do with it.

20 The rationale for transferring vari-
ance from the confounding variable(s)
to error variance is that, in most cases,
it is better to try to deal with error
variance than bias in interpreting the
results.

21 Degrees of freedom is an estimate of
the number of independent pieces of in-
formation that go into computing the
estimate. It is the number of values
that are free to vary in a data set. For
one dataset it is calculated as the num-
ber of items in the set minus 1 (n-1).
For two samples the degrees of freedom
are computed considering that there
are two n values, one for each sample,
to consider. In this case the number of
degrees of freedom is computed as df =
nl + n2 - 2.

22 For example the measurement with
an instrument that has a calibration is-
sue or with a watch that is consistently
ahead two minutes.

23 That means that when the same in-
strument is used to measure something
twice, the result of the measurement
would be approximately the same.



QUANTITATIVE RESEARCH BY EXAMPLE wversion : 1.0.0 {8} 15

e Sampling error - different samples generate different results, a fact
which needs to be accounted for when making inferences from sample
to population. This is measured by the standard error and it may
result in:

— Type I Error - occurs when the null hypothesis is rejected when
it is true. The probability of occurrence of this error is called
significance level and is denoted by the Greek letter alpha («);

— Type II Error - occurs when a false null hypothesis is accepted.

The probability of this error not occurring is called power and is
denoted by the Greek letter (5).

Sampling error cannot be completely eliminated but it can be reduced
by increasing the sample size.






Design

To understand the world around us we use models we construct in our
mind. Rooted in our education and our experience, these models may
or may not be true representations of reality and how close that rep-
resentation is. While for most people these models are “good enough”
for their everyday needs, researchers take them one step further and
attempt to devise ways to determine and understand if they are indeed
true representations of reality. For this purpose, researchers formalize
these models and design studies to test their validity. These formal mod-
els are based on the shared understanding of the phenomena under study

h24 and the researcher’s own insights. That is,

at the time of the researc
scientific models are a representation of our evolving understanding of

the physical world.

A research study is designed with the intent of finding or supporting
a model representing a phenomenon or construct as defined by the rela-
tions between the various variables involved. The theoretical framework
underlying this model is a major determinant for the choice of analytic
technique, for how this technique is applied, and for how the results
are interpreted. That is, the potential for success in a quantitative re-
search study is determined, among other things, by the use of analytic
techniques appropriate for the model involved.

When designing a research study one should be always aware that all
a statistically significant finding means is that the probability that there
is nothing to be found?® is small. Therefore, a sound research design
is based on a chain of decisions about the effect size that makes the
relationships sought substantially meaningful for the study, the level of
significance and the power of the statistical test, and a calculation of
sample size. This approach helps avoid pitfalls such as findings that are
meaningful but not statistically significant or findings that are statisti-
cally significant but not meaningful. That is, the focus of the research
process should be on the meaning®® of the findings from the perspective
of the theory and existing research.

24 For which reason a thorough litera-
ture review is necessary to building the
most relevant model.

25 The null hypothesis is true.

26 This meaning, such as relations be-
tween variables or differences between
means, cannot be established in the ab-
sence of other research.
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Occam’s Razor

Also known as the Principle of Parsimony, it states that simple explana-
tions are better than more complicated ones. In statistics for example,
using Occam’s Razor means that an explanatory model with fewer vari-
ables is better than one with a larger number of variables.

Attributed to the English philosopher William of Ockham, the Prin-
ciple of Parsimony states: Given a set of equally valid equivalent ex-
planatory models, the best explanation is the simplest one. In statistical

terms, it means:

e The model should have as few variables as possible.

¢ Linear models should be preferred to non-linear models.

e Models that rely on on fewer assumptions should be preferred to
those that rely on many.

e Simpler explanations should be preferred to more complicated ones.

Used in the process of simplification of statistical models, the Prin-
ciple of Parsimony advises that when a variable does not guarantee a
significant increase in deviance?” when removed, it should be excluded
from the study.

OK, but what does this mean for a study? In essence, the Principle
of Parsimony advises you to keep your research model as simple as
possible. Many researchers, myself included, have at times a tendency
to over complicate their studies?8, effectively overlooking this principle.

If you ever worked in one of the social sciences fields you probably
know how difficult it can be to access and recruit participants for a study.
Therefore, when opportunity arises, one might tend to include as many
data collection items as feasibly possible. While having a lot of data is
not a bad situation to be in, it also makes it tempting to fit it all in the
model. This can also happen when a research tries to justify collecting
more data just because access to participants is readily available.

Don’t do it. That is not to say that you shouldn’t collect the data if
possible. By all means, if the opportunity presents itself, do so. Never-
theless, do not use more data than you actually need in your analysis.
That is, let the Principle of Parsimony guide your decisions and ask
yourself the following questions:

o Are all variables (data) collected valuable and relevant to the study?
e From a theoretical perspective, would the inclusion of a variable make
a difference?

27 Deviance is a statistic used to com-
pare models. In this case, if the two
models - with and without the variable
in question - are not significantly dif-
ferent, the model without the variable,
the simpler model, should be selected.

28 By including as many variables as
can be fit and collected, for examples.
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The answer may not be obvious at first. To find out which model
is more parsimonious, you should first start looking at the existing lit-
erature. Attempt to find similar studies and study the models they
proposed as well as the data they used. You can then analyze each piece
of data (variable) individually to assess if it, theoretically, adds value
to your study, from both the perspective of prior research and based on
your own understanding of the problem under study.

When you decide how complex to make your model and how much
data you need to collect to validate it, think of the downsides increased
complexity brings about. Here are a few:

e Increased difficulty in analyzing and interpreting data.

« Longer and more complicated research instruments??.

e The time you will need to complete the study can also increase sig-
nificantly39.

Ezxperimental Versus Non-Ezperimental Research

A cursory search will show the wide variety of quantitative designes
researchers use. Nevertheless, all of them can be included in one of two
types: experimental or non-experimental studies. The most significant
difference between the two types is the level of control researchers have
over the environment in which the research is conducted.

Ezxperimental research studies are designed to provide the researchers
with the highest level of control possible over the experimental con-
ditions. The intent of an experiment is to discover the relationships
between the variables of interest while attempting to hold all other vari-

31 For this purpose the experimenter

ables constant (or control them)
usually manipulates a condition (the treatment) and attempts to assess
its impact on one or more variables of interest. Because of the ability to
manipulate the experimental conditions and the restrictive design aimed
at controlling as much as possible other extraneous variables, experimen-
tal research offers the best chance of finding causal relationships between
variables. Nevertheless, the controlled nature of the studies, makes them
less capable of reflecting reality. Given the restrictive nature of the de-

sign, experiments offer a high level of reliability and control32.

Non-Ezperimental research studies are designed to look at phenom-
ena and contexts the researcher does not have control over. In this case
the researchers cannot manipulate the conditions or variables of interest
and they have to rely on observations and measurements of variables
available to them and use those to seek an answer to the research ques-
tion they pose. This lack of control renders non-experimental studies

29 This could lead to a significant in-
crease in the time the participants need
to complete the task which, in turn,
could significantly increase the chance
for more participants to either decide
to leave the study early or not to par-
ticipate in it at all. That is, the longer
an instrument is, the less likely is for
the participants to complete it.

30Tf, for example, you are working
towards a Doctoral Dissertation, in-
creased complexity could bring delays
in completion and graduation.

31 For example, random assignment is
such a way to control for differences be-
tween subjects in research involving hu-
man subjects.

32In STEM fields, studies conducted
in the laboratory employ experimen-
tal designs. In non STEM fields ex-
perimental design is used, for example,
to understand the differences between
groups of participants (people) sub-
jected to different experimental condi-
tions, such as different visual stimuli,
or different learning environments.
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less capable of identifying causal relationships due to the large num-
ber of variables that usually accompany real-life contexts. Therefore,
while a relationship may be observed and inferences can be made, the
researcher’s ability to strongly suggest causality is limited by the poten-
tial interference in the process of other variables that were not accounted
for33. Because non-experimental studies look at phenomena in their nat-
ural environment, they tend to have a higher level of external validity,

which makes them much easier to generalize to larger populations3?.

Going a bit further, quantitative research studies can be grouped into

descriptive, correlational, quasi-experimental, and experimental.

Descriptive studies are designed to describe the status of a phe-
nomenon using mostly observational type data. They do not have hy-
potheses, though one may be developed after the data is examined.

Correlational studies use mostly observational data to explore rela-
tionships between variables without looking at cause-effect relationships.

Quasi-experimental studies are designed to recognize cause-effect re-
lationships between variables in situations when no groups are assigned
beforehand and no variables are manipulated to elicit a desired outcome.
The groups for which variable statistical summary data are compared
are identified after the data has been collected.

Ezperimental studies follow the guidelines of the scientific method
and are specifically designed to verify the existence of a cause-effect re-
lationship between variables describing a phenomenon. For this purpose
all efforts should be made to control for as many variables as possible
while manipulating the variable(s) of interest.

Between-Subjects vs. Within-Subjects Designs

The between-subjects and within-subjects research designs are differenti-
ated by the number of measurements done for every subject. In between-
subjects designs only one measurement is performed for each participant
while in within-subjects designs, there are multiple, successive, measure-
ments, for which reason the within-subjects studies are many times called
repeated measures studies3®.

In essence, the between-subjects research design allows researchers to
study the differences between groups of participants at a given point
in time. They usually involve comparing the groups on one or more
summary or central tendency measures®6. The participants are part of
only one of the research groups and are exposed to only one intervention.

In within-subjects designs all participants are members of the same
group and all are exposed to all treatments. The comparison usually

33 The context in a non-experimental
social sciences research study is so com-
plex that the researchers cannot cap-
ture and measure every variable that
may influence the phenomena they are
studying. For example, in educational
studies, prior knowledge has significant
influence on how well a learner under-
stands new concepts. In real life sit-
uations, such as during classroom in-
struction, there may not be time or ca-
pabilities to assess the learners’ prior
knowledge of a concept or construct.
34 These types of studies are frequently
encountered in the social sciences fields,
where researchers attempt to study
phenomena as they unfold in their nor-
mal environments.

35 Repeated measures studies are only a
subgroup, probably the largest, of the
broader category of within-subjects de-
signs.

36 E.g., mean or median.
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happens between the successive values of central tendency measures of
the same variable. These types of designs tend to have more power than
the between-subjects designs and make possible to observe change over

time, but tend to suffer from confounding issues3”.

Variables

Variable: A specific characteristic that can be measured and can assume
different values.

Continuous or Quantitative variables: a variable that has numerical
values, such as test scores, lengths, durations, etc.

Classification or Categorical variables: represent categories, usually
used as grouping variables, such as gender or race.

Measurement Scales

One of the major ways of understanding variables is to look at how they
are measured and their scale of measurement. From this perspective
variables can be nominal, ordinal, interval, or ratio. This classification
is important - because the statistical procedure to be used depends on
the scale of measurement.

Nominal Scale: Classifies in mutually exclusive categories. The vari-
able becomes a classification variable.

Ordinal Scale®®: Rank order with respect to the variable being as-
sessed. The values represent a hierarchy of levels. Provides limited in-
formation because the equal steps in the scale values do not necessarily
have an equal real-life quantitative meaning.

Interval Scale: Provides more information than the ordinal scale
because equal differences between values have a real-life equal mean-
ing/counterpart. The downside of the interval scale is that is has no

true zero point39.

Ratio Scales: Are similar to interval scales in that equal differences
between scale values have equal real-life quantitative meaning. However,
ratio scales also have a true zero point which gives them an additional
property. With ratio scales, it is possible to make meaningful statements

about the ratios between scale values?0.

Independent vs. Dependent Variables

Many research studies are primarily focused on two categories of vari-
ables: dependent and independent. This categorization is based on what

37 Confounding in within-subjects de-
signs can be mitigated by counterbal-
ancing. For example, participants can
be grouped together in small groups
and the order in which they are sub-
jected to the various treatment condi-
tions can be randomized across these
groups. Or, the randomization of how
the treatments are applied can be done
for each individual subject.

38 As an example, letter grades are ordi-
nal because how much A is better than
a B cannot be known. For a score range
between 0 and 100 A is between 90 and
100 and B between 80 and 89.9. The
difference between an A and a B is any-
thing between 19.9 and 0.1. An F is
for any score below 50, different from
the others. Recoding to a scale of 1 to
5 is misleading because the numerical
difference between 1 and 2 is not the
same as the difference between F and
D.

39 A value of zero on the scale is equal
to a zero quantity of the variable be-
ing assessed. For example, the Celsius
scale does not have a true zero point be-
cause the value of 0 does not mean that
there is absolutely no heat present.

40 For example, the system of inches
used with a common ruler is an exam-
ple of a ratio scale. There is a true zero
point with this system in which zero
inches does, in fact, indicate a com-
plete absence of length. The Kelvin
scale is, as opposed to the Celsius and
Fahrenheit scales, a ratio scale because
0 degrees Kelvin means, by design, that
there is absolutely no heat present.
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the variable measures and how it is intended to be used in the analysis.
To understand the difference, let’s look at an experimental study design.

An experimental study can be designed to find, for example, if two
interventions or treatments offer different or similar outcomes. This im-
plies the study needs two groups of participants, with one of the groups
being subject to one of the treatments, while the second group is sub-
ject to the other. If the groups come from the same population and are
homogeneous enough, the experiment should be able to recognize the
effects of the treatments. To recognize the effects, the design should
also include ways to measure them, such as test grades or scores.

In terms of variables, the one measuring the effects or outcomes is
the dependent variable (DV), while the one that places the participants
in groups is the independent variable (IV). The study will attempt to
determine the influence of the independent variable (treatment group
membership) on the dependent variable.

The dependent variables are those that measure an observed effect.
Examples of dependent variable could be a test score used as proxy for
students performance on a task.

The independent variables reflect either conditions specified by design
to help single out the effect or determined by conditions that are outside
the researcher’s and, potentially, the participant’s control. Examples of
such variables are grouping variables (e.g., treatment vs. control groups)
or demographic variables (e.g., age, gender, etc.).

With this knowledge lets look at an example. Consider we have a
study in which the participants are assigned to one of two groups. This
is under the researcher’s control. More exactly, these groups have been
formed by design to represent two different conditions or interventions.
In the analysis, they will be represented by the independent variable. On
the other side, the researcher has devised a way to measure the effects of
each of the two conditions or interventions (e.g., test scores). As, by de-
sign, the researcher expects these test scores to be, on average, different
for the two groups, one could say that they “depend” on which group the
participants were assigned to. In the analysis, this measure translates
into the dependent variable. All else equal the effects (measured by the
dependent variable) depend on the group to which the participants were
assigned to (represented as the independent variable). Let’s consider a

more concrete example.

Let’s say that we are studying the influence off the skill and drill
practice on mathematics performance in high school students. For this
purpose we select two groups of students. One group of students will
do math as usual and will not engage in any skill and drill practice.
The other group will continue to do math as usual but, in addition,
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will have a few extra sessions during which they will do math drills. In
this case, the first group is the control group and the second group is
the treatment group. The variable which defines the group a student is
member of, is the independent variable. All this said and done, the next
step is to find a way to assess the students’ performance. Let’s consider
that we chose a specific math test to be administered to all students
after the treatment has ended*!. The score the student obtains for this
test could be considered a measure of their performance. Therefore, for
further analysis, this score is considered to be the dependent variable.
That is, the score the student obtains depends on which group he was
member of and therefore dependent on the type of training (treatment)
the students engaged in.

The variables in a research design, while serving the same purpose
and representing the same components of relationship, may be found
under different names. For example, in experimental research stud-
42 43 variables is preferred. For

ies the use of independent** / dependen

non-experimental studies, the preference is for using predictor** / cri-

terion /response®®.

Descriptive vs. Inferential Designs

Descriptive statistical analysis is focused on measuring population char-
acteristics. For the purpose of these analyses a population is defined as
the entire collection of subjects or things that are being studied*6.

Inferential analysis is a statistic, a numerical value calculated using
a sample (or subset) of people, objects, events, etc. that can be used
to describe the characteristics of the sample?” and/or used to make
inferences/estimates about the population from which the sample was
extracted.

Most statistical tests included in this resource will probably fall in
the inferential category. Overall, inferential tests can be categorized in
two basic types: tests of group differences and tests of association.

Test of group differences - are designed to help determine if there are
differences between the mean scores of one or more dependent variables*®
between two populations. One of the best known examples is the one-
tailed t-test.

Tests of association - for a single population, to determine if there is a
relationship between two or more variables that describe this population.
Best known example is the correlation coefficient.

A third, more involved, class of inferential analyses allows to study
if the association between two variables is the same across two or more

populations. An example of such type of analysis is ANCOVA.

41 Qur expectation might be, for exam-
ple, for the students in the skill and
drill group to perform better than the
students that did not do any math drills
on this test.

42 Presumed cause in an experimental
study.

43 Studied effect in experimental stud-
ies.

44 Presumed cause in an non-
experimental study.

45 Studied effect in a non-experimental
study.

46 For example, all the students in a
course.

47 For example, the mean of some value.

48 Or criterion variables in non-
experimental studies.
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Research Questions

In quantitative studies research questions ask, in essence, if a relationship
exists between two events. In most cases this relationship is causal in
nature. That is, a research question asks if the onset of an event has an
impact on some other event. Let’s use the well known butterfly effect*?

as an example.

Would the flap of the wings of a butterfly in the Amazonian jungle
influence the number of hurricanes in Japan?

A closer look shows that this is indeed a question. The first part in-
troduces the originating event or the cause (butterfly flaps wings). The
second part describes the effect (number of hurricanes in Japan). Fur-
ther analysis shows that this question only asks if a relationship exists,
but does not include any indication of how strong the relationship is
and in which direction the effect will be. This is called a non-directional
research question.

If the literature supports or suggests a direction for the causal relation,
then a directional research question would be more appropriate as it
includes an indication of how the relation is thought to behave. Let’s
transform the question above to a directional research question.

Would the flap of the wings of a butterfly in the Amazonian jungle
significantly increase the number of hurricanes in Japan?

This time the question suggests both the direction and the strength
of the relationship, which is achieved by replacing the word influence
with the words significantly increase. In this case, significantly is an
indication of the strength of the relation and increase is an indication
oft the direction®?.

Hypotheses

Hypotheses are questions worded as statements to be tested using sta-
tistical tests. They are derived from the study’s research questions and
describe the causal relation(s) between events and/or variables. In the
most basic format hypotheses are bi-variate in that they state the influ-
ence of one independent variable (IV) on one dependent variable (DV).

Null Hypothesis (Hy) - statement saying that nothing is different.
For studying group differences the null hypothesis states that there are
no differences between group means of some variable of interest. For

49 Term used in chaos theory, coined by
Edward Lorenz.

50If the existing literature cannot pro-
vide any guidance as to what the
strength of the relation may be, remov-
ing significantly will not affect the type
of question.
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the study of association the null hypothesis states that there are no
relationships between the variables of interest.

Alternative Hypothesis (H;) - is the opposite of the null hypothesis
and states that there is a significant®! difference between the means or
that a relationship exists between the variables.

Alternative hypotheses can be further classified into non-directional

and directional.

Non-directional alternative hypotheses - predict that the means of
the population differ significantly but do not make a specific prediction
about the direction of the difference (which one is higher or lower).
These types of hypotheses can be answered using two-sided (two-tailed)
statistical tests®2.

Directional alternative hypotheses - are more specific in that in addi-
tion to predicting that the means of the groups differ on some variable it
also predicts which of the means will be higher and which lower. These
hypotheses can be tested using more powerful one-sided (one-tailed) sta-
tistical tests.

Because the one-sided statistical tests are more powerful
than the two-sided variety, using directional alternative hy-
potheses is preferred to the use of non-directional alternative
hypotheses.

A good hypothesis includes three elements:

o A clear statement of the causal relationship to be tested;

e A clear indication of the direction of that causal relationship, if
known;

e A clear indication of the variables between which the causal relation

occurs.

Hypothesis Testing

Testing a hypothesis means to determine if the null hypothesis (Ho)
can be rejected with (acceptable) confidence. For this reason, statistical
tests compute the p-value as the probability that the presently computed
value of the statistic will be obtained if the null hypothesis is true®.
Therefore, if the value of p is very small, the null hypothesis (Hg) can
be rejected and the alternative hypothesis (H;) should be accepted.

One commonly accepted cutoff value for p is 0.05. If the computed
p value is > 0.05, the test indicates that the null hypothesis should be
accepted (or that the test fails to reject the null hypothesis). If the

51 A difference between the means is
likely to exist; the question is if that
difference is significant so that an infer-
ence can be made based on the results.

521f the statistics computed by the
test follows a symmetrical distribution,
there are three possible alternatives for
defining hypotheses to test, two for one-
sided tests and one for a two-sided test.
The one-sided tests look only to one
side, left or right of the distribution
curve of the statistic, effectively test-
ing for one direction of the relation-
ship while ignoring the other. A two-
sided test tests both tails of the statistic
distribution, but with less resolution.
Two-sided statistical tests are consid-
ered less powerful than one-sided tests,
which are used to test the directional-
ity of the hypothesis in addition to the
significance of the difference.

53 Important: p does NOT provide
the probability that the null hypothesis
is true.
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computed p value is < 0.05 the null hypothesis may be rejected and
the alternative hypothesis is accepted, indicating that the differences or
relationships found seem to be statistically significant.

The reference p-value is selected for each analysis individually based
on the level of confidence in the predictive power of the test necessary
to generalize the findings from the sample to the population from which
the sample was drawn.

The p-Value Controversy

In recent years scientists have voiced concerns about potential misuse of
the p-value in research (Arnheim, Greenland, and Blake 2019). There
seem to be a few more widely accepted explanations for this: misunder-
standing of what the p-value is, tradition as reflected by the education
researchers receive in their formative years, and journal reliance on p-

values in accepting submissions for publication.

According to the American Statistical Society (ASA), an informal
explanation of the p-value is (Wasserstein and Lazar 2016):

“A p-value is the probability under a specified statistical model that a
statistical summary of the data (e.g., the sample mean difference be-
tween two compared groups) would be equal to or more extreme than
its observed value.”

Acknowledging this controversy, the American Statistical Association
(ASA) recommends researchers consider and follow a few guiding prin-
ciples in designing, conducting, and reporting their studies (Wasserstein
and Lazar 2016):

e The smaller the p-value is, the more incompatible the data is with
the null hypothesis, given a set of assumptions hold true. That is,
p-values are an indication of how compatible or incompatible the data
are with a hypothesized statistical model.

e The p-value is an indicate about how the data relates to a hypo-
thetical explanation, but not about the explanation itself. That is,
the p-value does not represent the probability of the hypothesis being
true or false.

e The results of an analysis should not be interpreted as a hard yes or
no as a statistical finding is not automatically true or false depending
on where it falls related to the p-value threshold. That is, scientific
conclusions or business decisions should not be based on the p-value
alone.
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e P-hacking or cherry-picking the results tends to generate a body of
research skewed towards significant findings. This can be avoided
through transparency and open and full reporting of a study and its
findings.

e Even weak treatments can produce small p-values if the sample is
large enough. Or, alternatively, strong treatments may produce irrel-
evant p-values if the sample is not adequate or the measurements are
incorrect. That is, the p-value cannot measure the size of an effect
because statistical significance is not the same thing as scientific or
human significance.

e Because it provides limited information, the p-value requires a con-
text in which to be interpreted. That is, the p-value is irrelevant by
itself.

The proposed solution for issues raised by the inadequate use p-values
in research studies is to use other approaches instead of or in addition to
it. Because they are easier to reason about, the most common suggestion
is to use confidence intervals® instead of the p-value.

Despite all these issues scientists raise, the p-value remains a valuable
tool in the researcher’s toolbox. It just needs to be used with care, not
treated as a binary, definitive answer, and the research using it should
observe the appropriate guidelines for design, collection, and reporting.
This resource uses the p-value in its traditional acception and attempts
to follow, as much as possible, the above mentioned guiding principles.

How to Choose the Appropriate Statistical Test

Two simple criteria, type of variable’s scale and number of variables of
each type (dependent and independent), can be used as the starting point
for determining which statistical analysis would be more appropriate®®.
Of course, once a possible analysis is selected, it should be carefully
considered, as not all analyses work in all instances. If we were to build
a table or diagram of all possible alternatives, for each specific case,
it would quickly become unusable. Therefore, tables 1, 2, and 3 offer
some guidelines for what general type of analysis one should start from
(adapted from Hatcher & Stepanski (1994)).

Multiple types of analyses can be applied for the same combination of
variables/scales. The final selection depends the specifics of the analysis
as it applies to the actual data. For example, Table 1 shows that three
statistical tests can be used for an analysis with one nominal independent
variable and an interval or ratio dependent variable. The Kruskall-
Wallis test is usually used for ordinal dependent variables, but can be

54 Confidence intervals describe the
variability surrounding the sample
point estimate. The wider the inter-
val, the less confident one can be about
the estimate of the population mean.
In general, the larger the sample size,
the more precise the estimate is.

55 The MyReLab website (https://
www.myrelab.com) offers a tool that
helps with the selection an appropriate
statistical test.
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used with interval/ratio dependent variables when these show significant
departures from normality. Similarly, the t-Test is applicable only if the
independent variable has only two possible values. Therefore, when
deciding which analysis to use, the requirements and assumptions of
each statistical test should be carefully considered.

The advice for how to choose when to apply the most commonly used
statistical analyses presented in Tables 1, 2, and 3 has been adapted
from Hatcher & Stepanski (1994).

ONE Independent ONE Dependent Statistical Analysis

Variable Variable

Nominal Nominal Chi-Square

Nominal Ordinal/Interval/Ratio  Kruskal-Wallis

Nominal Interval/Ratio t-Test, One-Way
ANOVA

Ordinal/Interval/Ratio  Ordinal/Interval/Ratio  Spearman
Correlations
Coefficient

Interval/Ratio Interval/Ratio Pearson Correlations
Coefficient

MANY Independent ONE Dependent Statistical Analysis

Variables Variable

Nominal /Interval/Ratio Nominal/Ordinal Logistic Regression

Interval/Ratio Nominal Discriminant Analysis

Nominal Interval/Ratio Factorial ANOVA

Nominal /Interval/Ratio Interval/Ratio ANCOVA, Multiple
Regression

Independent MANY Dependent Statistical Analysis

Variable(s) Variables

Nominal (ONE) Interval/Ratio One-Way ANOVA

Nominal (MANY) Interval/Ratio Factorial MANOVA

Nominal/Interval /Ratio Interval/Ratio MANCOVA

(MANY)

Interval/Ratio Interval/Ratio Canonical

(MANY) Correlations

There are many resources available to help with deciding what sta-
tistical test to use for data analysis. For example, Bruce Frey’s (2016)
book There’s a Stat for That! What to Do and When to Do It, provides
a thorough overview and guides through the selection process, which
makes it a worthy addition to any researcher’s toolbox.

Table 1: ONE DV x ONE IV

Table 2: ONE DV x MANY IVs

Table 3: MANY DV x ONE or
MANY IVs



Effect Size and Power

An experiment, or a study in general, should be designed to be suffi-
ciently sensitive to be able to detect any differences the population may
exhibit. The most direct ways to increase the sensitivity is to increase
the sample size, by choosing treatments expected to produce large ef-
fects, and by reducing unexpected variance.

Relative Treatment Magnitude

The most popular measure of treatment magnitude is called omega
squared (w?)°0. Tt is a relative measure that reflects the portion (pro-
portional amount) of population variance that can be attributed to the
experimental treatment. That is, the proportion of variability explained
by the treatment or, more commonly, explained variance. Its value is
0 if the treatment effects are absent in the population and has values
between 0 and 1 if the effect is present.

Based on the value of w?, in the behavioral sciences field, the effect
size can be interpreted as (Cohen 1977):

e Small, for a value of .01;
e Medium, for a value of .06;
e Large, for a value of .15 or greater.

But how would one know whether the treatment is weak or not? Ef-
fects size, as measured by w? is, basically, the ratio between the variance
due to treatment and total variance (treatment + error). First, the ac-
tual effect size can only be estimated after the data is known. So, how
would one estimate the treatment effect size at design stage? There are
a few possibilities:

1. Deep knowledge of theory should be the primary source of informa-
tion when estimating the potential strength of an intervention.

56 Another measure used is the squared
multiple-correlation coefficient, which
represents how much of the total varia-
tion is associated with the variation in
treatment.
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2. Search literature for independent variables that seem to produce large
effects; use similar research published by others.

3. Choose the treatment and then run preliminary or pilot studies. Use
the data to estimate the effect size for the main study. Eventually
adjust treatment if needed.

In social sciences it is unlikely to observe large effect sizes®?. It is
often the case that if a study has an IV that has large effects, that study
is just the first step. Further refinements, looking as components of that
first IV, will observe theoretical relevance for increasingly smaller effect

sizes.

Standardized Effect Size®®

Known as Cohen’s d, the standardized effect size represents the difference
between the means of two groups divided by the Standard Deviation
(SD), in absolute values.

_ |meang; —mean|

d SD

Fundamentally, Cohen’s d expresses the difference between two means
in term of Standard Deviation units. It can be interpreted as an equiv-
alent to a z-score for the standard normal distribution. Therefore, if the
effect size is 0.6 (SDs above average) between group 1 and group 2, with
mean of group 1 > mean of group 2, then group 1, on average, exceeds
the values of 59% of group 2. While unlikely to observe standardized
effect sizes this large in real life, if its value is > 1, the difference between
the two means is > 1 SD, while for d > 2, the difference between means
is > 2 SDs.

According to Cohen and later Sawilowsky (Sawilowsky 2009), the
standardized effect sizes can be thought of as:

e .01 - Very Small

e 0.2 - Small

e 0.5 - Medium

o 0.8 - Large

e 1.2 - Very Large
e 2.0 - Huge

Note: For independent groups, the Standard Deviation used to com-
pute Cohen’s d is the pooled®® Standard Deviation.

57 Perception of effect size for the same
treatment may differ between fields, re-
searchers, and studies. This is why it
is advisable to base any preliminary (at
design time) estimates of effect size on
theory and prior research as close to the
desired field as possible, followed by pi-
lot testing.

58 The MyReLab website (https://
www.myrelab.com) offers a more com-
prehensive power analysis tool.

59 Pooled /combined /composite  vari-
ance is based on the variance of
multiple populations when the vari-
ance of the population is the same
while the means may be different.
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Controlling Type I and Type II Errors

In statistical analysis power is the probability the findings will reject
a false null hypothesis. That is, when an effect is present, power is
the likelihood that the effect is detected. So, why should the power
of an experiment be controlled? First, because an experiment’s power
represents the degree to which it can detect differences in treatment and
the chances that the experiment can be replicated. Second, a power
analysis will help avoid wasting resources when not necessary50.

Overall, the statistical power of a test is determined by three factors:

o How large is the difference between the variables measured for the two
or more groups involved in the study. A small difference produced by
the treatment or cause will require for the study to have more power.

« What level of significance (p-value) is sought®’. The lower the p-value
the higher the power necessary to confirm the difference.

o How often the effects occur in the study groups. A study’s power
peaks when about half of the population exhibits the effect.

Controlling Power Through Sample Size

Effect Power
Size
@2 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
a =0.05
0.01 21 53 83 113 144 179 219 271 354
0.06 5 10 14 19 24 30 36 44 57
0.15 3 5 6 8 10 12 14 17 22
a =0.01
0.01 70 116 156 194 232 274 323 385 478
0.06 13 20 26 32 38 45 53 62 77
0.15 6 8 1 13 15 18 20 24 29

Power, Effect Size, and Significance influence the number of partici-
pants that are necessary to be able to observe differences between groups
or variables of interest.

Figure 1 (adapted from Keppel (1991), p. 72) illustrates the rela-
tionship between Power, Effect Size, Significance, and Group Size. The
number of participants (sample size) is directly proportional with the
Power of the design and inversely proportional with the Fffect Size and

60 For example, adding more partici-
pants to a study can be costly in both
time and money.

61 For example, 0.05, 0.01, or 0.001

Figure 1: Relationship between
Power, Effect Size (w?), Signifi-
cance, and Group Sample Size
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Significance level. For example, for an Effect Size of .01 and an expected
Power of .50 and « of .05, the minimum number of participants in each
group of the design would be 144. Therefore, if the study includes two
groups, a control group and a treatment group, the entire sample size
should be at least 288 participants. That is, the weaker the treatment,
the more participants are needed to be able to observe the effects.

As a rule of thumb, a study should be designed for at least a medium
Effect Size (o = 0.6) and a relatively high Power (.70 or .80) for a Sig-
nificance Level (w?) of .05. A small effect size (weak treatment) requires
considerably more resources to be able to observe the effect. Therefore,
if possible, the intervention and/or variable(s) should be chosen to avoid
weak treatments. Lower power is also to be avoided because it wastes
resources (e.g., time, energy) to produce a significant result®?. Experi-
ments with low power do not produce reliable findings. The sweet spot
for the design of a study would be at the intersection of the highlighted
columns and rows in the figure above.

Population vs. Sample

Population: Is the entire set or pool of similar individuals, items, or
events of interest to a researcher. For example, all freshmen at a two-year
college can represent a population. Another example would be all the
wolves in the Yellowstone National Park. That is, the entire collection
to be studied. Can be large or small, depending on the researcher’s

interests.

Sample: A subset of individuals, items, or events, drawn from the
population of interest. To continue the example above, 200 freshmen
constitutes a sample. Or the 50 wolves researchers may have tagged
with geo locators to follow their behavior. Because in many instances
it may be impossible to cover the entire population, a sample allows
researchers to use manageable numbers of subjects as representatives
of the population to be studied. If the size and characteristics of the
sample are appropriate, judgment calls or estimates can be made about
the entire population.

Practical Advice on Sample Size

The purpose of computing the size of the minimum necessary sample at
design time is to make sure the data is collected from enough participants
so that the results can be generalized back to the population the sample
was drawn from.

62 For example, for a power of .50 there
is a 50-50 chance of observing signifi-
cance.



QUANTITATIVE RESEARCH BY EXAMPLE wversion : 1.0.0 {8} 33

The table in figure 1 can be, for example, used for such a purpose.
At the design phase, use prior studies, on the same subject or on similar
or related topics, to estimate effect size (w?) of the treatment intended
to be administered. Then choose the level of significance (o) you want
(e.g., 0.05 or 0.01, or something else) and choose the power you wish
your experiment to have. Based on the table you can then determine
how many participants you should have, at the minimum, in each study
group. So, if the experiment has, let’s say, two groups, if the table
indicates that 30 participants are needed, at the minimum, per group,
to observe the values you chose, you would need at least 60 participants
in total, equally distributed between the two groups. But this is just a
theoretical number.

This estimate is just the first step of the process. You should then con-
sider the possibility that not all responses you receive (or measurements
of the DV) will be usable, so it would be advisable to adjust upwards the
value you calculate so that it is more likely to get the minimum number
of usable responses.

Many of the tests work better if the groups are balanced (in number of
participants). Therefore, the procedure for the selection of participants
and assignment to the experimental groups should attempt to make
that happen. And this is not just a matter of, say, assigning incoming
participants (they come in randomly) alternatively to each study groups
(treatment condition). You should also consider the type of treatment
you are applying and the likelihood for the participant to drop early or
to not complete the entire study.53

In the end, the sample size determination is based both on numerical
computation and the researcher’s understanding of the field and his or
her grasp of how prior research fared. Usually, power estimates are based
on the minimum effect size the researcher wishes to detect. A realistic
estimate is usually based on prior research.

Below 1 listed resources that can help determine power and sample
size. The first one is a software application that allow you to make
the necessary computations. The second one is a resource that helps
you understand how to use the R statistical computing language for the
same purpose.

G*Power (http://www.gpower.hhu.de)54

Power analysis in R (https://www.statmethods.net /stats/power.html)6.

MyReLab website (https://www.myrelab.com)56.

Besides prior research and immersion in
theory, peers working in the same field
or one close to it may the best resources
to reach out to to determine a meaning-
ful sample size. They are likely to have
worked with the same or similar partic-
ipant pools and have insights into how
potential participants may respond to
the proposed treatment.

63 For example, the more complex and
cognitively involved the task is, the
more likely is for the participant to
drop early, skip responses, or just
guess, situations in which the experi-
menter ends up with missing or unus-
able data, or incomplete records.

84 http://www.gpower.hhu.de

65 https://www.statmethods.net/
stats/power.html

66 https://www.myrelab.com
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Sample Size

A sample is a subset of a population selected to represent the entire
population in a study. It is used because while the study is interested
in learning more about the population, it may not always be feasible
to study every member of that population. The reasons can be, for
example, unfeasible incurred costs®” or, it may just be impossible due
to geographical distribution or availability.

Factors Affecting the Size of the Sample
For any study, the sample size depends on a few elements:

o Level of significance (what is acceptable as an error rate). This is
the p-value, such as 95% (a = 0.05) which indicates the researcher’s
readiness to accept a certain probability that the obtained result is
due to chance and not to the intervention or researcher’s intention.

o Power, discussed in the context of Type II error, the failure to detect
a difference when one doesn’t exist, or the chance of false negatives.
The power of the study increases with the decrease in the chance of
committing a Type II error. Usually 80% is an acceptable level for
the power of a study. It means that the researcher is accepting the
study misses a real difference in one in five times. For more strict
studies, power can be increased to 90% or more.

o Expected effect size, represents the difference between a variable’s
value in one groups and its value in another group. It is inversely
proportional with the sample size. There is no formula to determine
the effect size. Most often is determined based on prior studies re-
ported in the literature.

o Effect prevalence in the population, estimated from previous studies.

o Population standard deviation, a measure of dispersibility.

When estimating sample size a researcher should consider other ele-
ments as well, such as administrative issues, costs, possible participant

67 For example in the form of time and
money.
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response rate, and so forth. Each study should be considered from all
angles and all potential elements that could participate in determining
the sample should be studied carefully.

Methods of Determining the Sample Size

A cursory review of the literature shows that sample size can be deter-
mined in many ways using formulas and/or tables and that there is no
universal “formula” for sample size calculations. Each of the methods
has a recommended use.

For example, an approach to make a rough determination of a sample
size for an experimental design using effect size and power was discussed
in the Controlling Power Through Sample Size section. You will also
find many sample size calculators available online, many of them based

on Cochran’s Sample Size Formula.

Cochran’s Sample Size Formula

Used to compute an ideal sample size for a desired level of precision, it is
recommended to be used for studies with infinite populations (Cochran
1977).
22.p-(1-p)

2
e: desired level of precision, the margin of error

nog =

p: the fraction of the population (as percentage) that displays the
attribute

z: the z-value, extracted from a z-table®.

Let’s consider an example. Think of a study of students in a large
university campus for which we don’t know the campus size®. We
are interested in finding the percentage of students who eat lunch at
the campus dinner halls but we do not have insider information. The
question is how many students would we need to ask that question to
be able to determine, with reasonable confidence, what percentage of
students conform to the sought behavior. Given the lack of information
we start by considering that 50% of the students eat lunch at the school
dining halls, which provides the largest variability. Then we consider a
95% confidence level (leading to an «=0.05) and a £5% precision. From
the z-tables, the value for z is 1.96. Therefore, the theoretical sample
would be:

1.962-0.5- (1 —0.5)

o= 0.052

How to find the value of z from a z-table. The procedure is:

= 384.16 ~ 385

68 The entry for z in a z-table represents
the area under the normal distribution
curve to the left of z (Figure 2).

Table entry

Figure 2: Area represented by the

z-value.
89 For example a large campus may
have 10 - 15 K students
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1. Convert the confidence level from percent form to decimal form as
value between 0 and 1. (95% — 0.95)

2. Subtract the value from 1 and divide by 2 to find out how much is
half (1 - 0.95 = 0.05; 0.05/2 = 0.025)

3. Add the value from 2) to the value from 1) (0.95 4+ 0.025 = 0.975)

4. Look for the value obtained in step 3) in table values. In Table 4 the
value sits at the intersection of row labeled 1.9 and column labeled
0.06.

5. Determine the value of z by adding the value for the column with the
value for the row obtained in step 4 (1.9 + 0.06 = 1.96).

Cochran’s Modified Formula for Finite Populations

A slightly modified formula can be used if the size of the population is
known.
1o
ng — 1
N
ng: Cochran’s sample size computed using the formula for ideal sam-

n =

1+

ple size;
N: the size of the population?.

As an example, let’s look at the same problem as before but for a
much smaller campus of N = 600 students. While we can still use the
theoretical sample of 385 participants computed before, do we need to?
The necessary sample size may be smaller.

n= Hggg_l = 234.76 =~ 235

600

The result of this computation indicates that for smaller populations

the number of subjects (sample size) can be smaller (235 vs. 385) for the

researchers to be reasonably confident of the findings.

Yamane’s Simplified Formula for Sample Size

To make it simpler to compute the sample size without over estimating
it when the population is known Yamane (1967) proposed the following

formula:
N

T1+FN-e2
N - population size

n

e - level of precision

Using the same example as before, Yamane’s formula would suggest
a sample size of 240 subjects for a student population of 600.

70 The sample size is dependent on the
size of the population until the popula-
tion reaches about 40-50 K, after which
the increase is almost none. Therefore,
if the estimated population is this large
or larger, the theoretical sample size, as
computed for an unknown population,
is about equal to the one generated by
the modified formula.
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- 600 — 240
14 600 - 0.052
0.00 0.01 0.02 0.03 004 005 0.06 0.07 0.08 0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753
0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517
0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879
0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549
0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852
0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389
1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319
1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767
2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817
2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916
2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936
2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986
3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

Table 4: z-table



Assumptions and Qutliers

Most statistical tests rely on a set of assumptions about the data they
are used to analyze. These assumptions ensure that the test performs as
expected and that the results can be interpreted with a high degree of
confidence. Understanding when and how these assumptions lead to bi-
ases in analysis and what the consequences are is essential to meaningful
data analysis.

For example, many tests’! assume that the data is normally dis-
tributed. While these statistical tests vary in how well they can deal
with departures from normality, if the data does not follow a normal
distribution, the results provided may not have sufficient power to ex-
plain the phenomenon properly and therefore is important to confirm
before hand that if the analysis is conducted the interpretation is valid.
In situations in which normality is not observed it is usually possible to
find a different statistical test that is less sensitive to departures from

normality.

What is important to remember is that each statistical test functions
better when certain conditions, established by those who developed the
test, are met. Therefore, assumptions need to be tested to make sure
that the statistical test is appropriate to be used for the data set.

The most common parametric statistical analyses expect the data to
be normally distributed and homogeneous.

Normality

Compares the sample’s distribution with the normal distribution (Figure
3).

To study the normality of a data sample we use the skewness and
kurtosis of the sample’s distribution to determine its departure from the
theoretical normal distribution.

71 E.g., Linear Regression, ANOVA.
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Figure 3: The normal distribu-

tion
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Skewness

Measures the deviation from symmetry as compared to normal distribu-
tion, which has a skewness of 0. A value other than 0 means that the
data is either skewed to the left or to the right of the corresponding nor-
mal distribution. A positive skewness value indicates that the sample’s
distribution is skewed towards higher values, to the right. A negative
value indicates a sample distribution skewed towards smaller values, to
the left.

Although largely arbitrary, in most situations a simple rule of thumb
of £1 can be used to interpret the sample’s distribution skewness. If
skewness is either greater then 1 or smaller than -1, the distribution it
is computed from shows a significant departure from symmetry.
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A more detailed interpretation (Bulmer 1979):

o Highly skewed if skewness < -1 or > +1;

o Moderately skewed, if skewness is between (-1 and -1/2) or between
(+1/2 and +1);

o Approximately symmetric, if skewness is between -1/2 and +1/2.

Kurtosis

The normal distribution has a “balanced” shape, not too peaked and
not too flat. Kurtosis is a measure of how much and in which way
the “peakness” of the described distribution differs from the theoretical
normal distribution. The kurtosis of the normal distribution is 3. A
value other than 3 means that the distribution is either flatter or more
peaked than the normal distribution. If the value is positive (> 3), the
distribution is more peaked and is called to be leptokurtotic, with longer
and fatter tails and higher and sharper central peak. If the value is
negative (< 3), the distribution is flatter and is called platykurtic, which
shorter and thinner tails and lower and broader central peak.

Figure 4: Left skewed, normal,
and right skewed distributions
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Tests of Normality

Visual Checks

Visual checks can be used to assess, roughly, how close the sample’s
distribution is to the normal distribution. This can be accomplished
using Quantile-Quantile plots (qgq-plots) that help visualize if a set of
data comes from a theoretical distribution, the normal distribution in
this case. In essence a gg-plot is just a scatter plot of two sets of quantiles,
theoretical and observed, as they relate to each other”. If the sample
came from the desired distribution, the plot will roughly approximate a
straight diagonal line. Any departure from that shape is an indication

of departures from normality (Figure 5).

Visually inspecting a gq-plot does not offer an exact and definitive
proof that the sample data comes from a normal distribution. Never-
theless, it can be used to determine if further testing is necessary. For
example, if the gg-plot has an S-shaped appearance, the sample data
may be skewed.

More Specific Tests

Visual checks, while helpful, cannot be relied upon in most situations.
Therefore, there are more specific tests that can be used to perform a

more formal evaluation.

D’Agostino-Pearson omnibus test - Uses test statistics that combine
skewness and kurtosis to compute a single p-value. This test has a
tendency to hyper actively reject normality for small samples for which
reason is not recommended to test normality of samples less than 20.

Kolmogorov-Smirnov test - Non-parametric test used to compare two
samples that can serve as a goodness of fit test. When testing for nor-
mality for example, the sample data is standardized and compared with
the theoretical normal distribution. It is less powerful than some other
tests, such as Shapiro-Wilk.

Shapiro- Wilk’s W test - Tests the null hypothesis that the data in the
sample is part of a normally distributed population. The test computes
the value of the W statistic and a p-value probability. Considering the
commonly accepted 0.05 value for p, any computed p-value greater than
0.05 indicates that the null hypothesis cannot be rejected and therefore
it should be true and that the assumption of normality is upheld. Does
not work well for samples with many identical values.

Chi-square test of goodness-of-fit - Looks at a single categorical vari-
able from a population and attempts to assess how close to or consistent

72 Quantiles, also known as percentiles,
are points in the data that divide the
observations in intervals with equal
probabilities. In essence, quantiles are
just the data sorted in ascending order.
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Left—skewed distribution
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with a hypothesized distribution the actual distribution of that varialbe
is. See Goodness-of-Fit Test for more details.

Homogeneity of Variances or Homoscedasticity

The assumption of homogeneity of variances expects the variances in
the different groups of the design to be identical. The homogeneity of
variances is a standard assumption for many statistical tests and there-
fore it needs to be assessed so that the test results can be interpreted
with confidence.

So, why is it important to test it? Many of the most common tests
in statistical analysis”™ are part of a category of tests called general
linear models. These models are linear in the sense that they add things
together. To be able to add things together, these tests assume that
the distributions of the things being added are the same. Otherwise, if
distributions are not the same, the results/estimate and the conclusion
could be biased (usually overestimation of goodness of fit), therefore
effectively rendering the test results unusable.

In case of ANOVA, for example, if the variance of separate groups is
significantly different, the p-values the test computes are no longer ac-
curate because they are calculated based on the fact that certain results
occur if the null hypothesis is true.

Let’s look at a few of the more common tests one can use to investigate
the homogeneity of variances.

Bartlett test for homogeneity of variances - Tests the hypothesis (null
hypothesis) that the variances in each sample groups are the same. This
is the preferred test if the data is normally distributed, but it has a
higher likelihood to produce false positive results when the data is non-
normal. Therefore, Bartlett’s is preferred when the data comes from a

known normal or close to normal distribution.

Levene’s test - A more robust inferential statistic alternative to the
Bartlett test used to evaluate or assess the equality of variances for a
variable that has two or more groups. If the computed p-value is less
then the set significance level™®, the sample variance is unlikely due to
random sampling from a population with equal variances. Therefore, the
null hypothesis that the variances are the same is rejected. The Levene’s
test is less sensitive to departures from normality than Bartlett’s.

Fligner-Killeen test - Non-parametric test, robust for data sets with
departures from normality. Can be useful if the normality of the sample
data for groups is not observed.

73 For example, ANOVA assumes that
observations are randomly selected
from the population and that all ob-
servations come from the same popu-
lation (or underlying group), with the
same degree of variability, following the
same distribution.

7 E.g., the usual 0.05.
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Outliers

Outliers, extreme values data depart significantly from the majority of
the values in the data set, can have substantial influence on the results of
a statistical analysis. For example, they can skew the sample distribution
to such extent that its departure from normality makes a large number
of parametric statistical tests that require the data to be normal no
longer applicable. Or, when present in many real-life time series data
sets can significantly alter the outcomes of the analysis. For example,
when analyzing an economic phenomenon, a hurricane affecting some
link of the supply chain can produce a specific and significant change
for a short period of time, which can influence the understanding of the

phenomenon in average conditions.
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Theoretical Quantiles

Figure 6 shows how outliers can influence the shape of the dataset’s
distribution. The graph on the left shows a set of normally distributed
data’™. The graph in the middle represents the same data set to which
two data points were added as outliers”®. A visual inspection shows how
the addition of the two outlying data points “pushes” the distribution to
the left, away from the shape of normally distributed data. The qg-plot
in the graph on the right shows how the two outliers influence dataset
normality.

Most of the times outliers can be identified visually, in graphical rep-
resentation such as scatterplots (Figure 7 left), box plots (Figure 7 right),
or mahalanobis distances”’. In scatterplots outliers are represented as
points plotted away from the “cloud” formed by majority of the data set.
In box plots™ they would be indicated by individual points plotted on
the graph. Mahalanobis distances®, when represented as a histogram,
will indicate the possible existence of an outliers by the presence of bars
at the right side of the graph.

Linear regression presents itself as one of the better ways to explain
how outliers can influence the outcomes of the analysis because these
extreme values can substantially influence the slope of the regression

Figure 6: How outliers influence
distribution shape

75 The same data used previously in
this section to discuss skewness. For
this graph the data ranges between 0
and 1.

76 For exemplification, one value, 2, was
added to simulate a possible outlier.
The point is located outside the range
of the original dataset.

7" The use of mahalanobis distance is
better understood in context. See the
outliers section in multiple regression.
78 Also known as box-and-whisker di-
agrams, are used to represent data
graphically based on quartiles

7 Mahalanobis distance (MD) is the
distance between two points in multi-
variate space. It measures the distance
relative to a base or central point con-
sidered as an overall mean for multi-
variate data (centroid). The centroid
is a point in multivariate space where
the means of all variables intersect.
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line®Y. In figure &, the left side shows the data set without outliers and
the right side shows the data set with one added outlier. Visually, the
slope of the regression line (in red) changes from negative to positive
when the outliers are not removed from the dataset. The change in
slope may look small in the image below, but it could be significant in
the analysis.
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The way outliers are approached depends largely on the type of anal-
ysis being conducted and the type of data being analyzed. So far a
widely accepted numerical method to deal with outliers does not seem
to exist. Therefore, while in this resource approaches to outliers will be
discussed when relevant to the statistical test and example, there are
few guidelines that may be helpful across tests.

Outliers investigation is highly contextual and the criteria used for
analysis ranges from theoretical necessity to common sense. There are
legitimate situations when automatic (mathematical) removal of out-

liers makes sense. For example, when studying people reaction times to

Figure 7: Scatterplot, Box plot,
and mahalanobis distances

80 This, in turn, will affect how well the
regression equation will fit the data and
the correlations coefficient. A single
outlier can decrease the value of a cor-
relation coefficient to the extent that
the analysis rejects the existence of a
real phenomenon.

Figure 8: Outlier influence on re-
gression outcomes
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some stimulus and the vast majority of data points are in the millisec-
onds range, values in the seconds range most likely indicate distracted
participants and therefore they could be safely removed. Alternatively,
in situations where outliers consistently show up across groups, design
cells, or successive measurement, they could indicate the existence of a
different phenomenon than those under direct study. When their pres-
ence is detected, each outlier should be investigated individually and a
decision made if it should be corrected®!, removed®?, or retained®3 in
the analysis.

81 For example, in situations when the
existence of an outlier is due to im-
proper data input.

82 In cases when the data point is deter-
mined to be an aberrant measurement.
83 When the outlier proves to be a true
measurement and there are practical
and/or theoretical reasons to be in-
cluded in the analysis.



Normalization, Standardization,

and Data Transformation

In statistics the term mormalization can have multiple meanings. For
example, it can mean to adjust values of variables to be analyzed to a
common scale when these variables are measured using different scales.
Alternatively, normalization may mean to transform the values of a sam-
ple to get it closer to the normal distribution, to fulfill the assumption
of normally distributed data underlying many common statistical tests.
Or, in other situations, normalization could be an attempt to eliminate

the effects of known influences.

Sometimes the term normalization is used interchangeably with the
term standardization. While both serve the same general purpose, there
is a difference:

e Normalization: intended to scale a variable to a range of values be-
tween 0 and 1;

o Standardization (e.g., z-score): intended to transform a variable to
have its mean = 0 and SD8* = 1.

Some of the processes that fall under the concept of normalization
may be called data transformation®. While all this may be confusing,
the process always involves a purposeful conversion of the data of a data
set from its current format to a different format. In most situations, the
process also involves eliminating the units of measure with the intent of
making the comparison easier.

Scaling/Rescaling

A very simple process which aims to change the spread of the data
and/or the position of the data points. The transformation uses a simple

linear equation of the form y = a x x+b, but leaves unchanged the shape

86

of the distribution or the z-scores It will change the data median,

84 Standard Deviation

85 IMPORTANT: A transformed value,
such as a log of the data, has little
informational value when interpreted
and presented. Therefore the once the
analysis has been performed, when dis-
cussing the findings, that data should
be converted back to its original for-
mat by applying the reverse sequence
of formulae that was used to transform
it in the first place.

86 Because they are calculated as a ra-
tio of the difference between the ac-
tual value and the sample’s mean and
the sample’s standard deviation. In
essence, the z-socre indicates how many
standard deviations from the mean the
data point is.
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mean (u), and standard deviation (o).

Frequency

The more common are:

Range scaling: change the data from one range to another (magnifi-
cation or reduction)®7;

Mean centering: changes the data by subtracting the mean of the
sample from each data point, resulting in a shifting of the data to-
wards the mean, effectively making the mean of the scaled data set
to be 088;

Standardization: is intended to make data samples comparable. The
process does not change the shape of the distribution, only the mean
and the standard deviation. The most common method is the z-
transform used to convert the data to z-scores. Also called auto-
scaling, the z-transform makes the data comparable by transforming
observed data into multiples of its standard deviation (SD). The mean
of the z-transformed sample is equal to 0. If the original distribution
of the data is normal, the transformed data will also follow a normal
distribution with a mean of 0 and a standard deviation of 1 (Figure

9).
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Distribution Normalization

There are many real world processes that generate data that do not

follow the normal, Gaussian, distribution.

Previous sections already

discussed how to determine if the data are normally distributed or not.

Non-normal data usually fits in one of two categories: 1) follows a differ-

ent distribution or 2) is a mixture of distributions and data generation

processes.

For the data that follows a known distribution®?, one can either iden-

87 Often times done to bring the vari-
ables in an analysis to the same scale.

88 Often done to center the analysis on
the variation part of the data rather
than, for example, a center tendency
value.

Figure 9: z-transformation of

data

89 F.g., binomial, log-normal, exponen-
tial, etc.
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tify the theoretical distribution it follows and analyze the data using
tests appropriate for that distribution or somehow transform it to a nor-
mal distribution before analysis and then use tests that assume data
distribution to be normal.

Dealing with the 2" category of non-normal data, which displays a
mixture of distributions, is more complicated because few, if any, trans-
formations would be able to deal with all that variability for the entire
data set. In this case, the data needs to be studied and refined before
analysis. For example, an attempt to break down the data can pro-
duce sub-samples or categories for which, individually, the distributions
are known or recognizable. In this case, transformations can be applied
to each sub-sample or category. If the observed data is produced by
multiple processes, such as business data produced by complex work
activities, multiple shifts, locations, customers, seasonality, etc., an at-
tempt to review the individual process that produced data points and
find a common denominator to transform the data to can sometimes help
bring the data close enough to the normal distribution so that analysis
is possible??.

Some of the common options are:

e Boz-Cozx transformation: Uses a family of power functions to trans-
form data to a more normal distribution form. The formula used
for transformation are simple but computationally intensive. For this
reason most statistical analysis packages (e.g., SPSS) offer an option
to run Box-Cox transformations on the data set.

e Log transformation: The value of each observation is transformed
by applying the base 10 or natural logarithm to the observed value.
The reverse process is to raise the values at the power of 10 or e,
depending of what type of logarithm was initially applied. It is es-
pecially useful if the original variable follows a log distribution; after
transformation the resulted values will be normally distributed.

e Square-root transformation: The value of each observation is trans-
formed by taking its square root. To reverse the process is to square
the values. Usually used when the variable is a count of something.
If the sample includes negative values, the sample should be first
rescaled to have all positive values?2.

o Arcsine transformation: The value of each observation is transformed
by taking the arcsine of the square root of the number. The numbers
to be transformed should be between 0 and 1. The resulted unit
of measure is radians and the resulting range is —7/2 to w/2. It is
usually useful for proportions or ratio type data that ranges between
0 and 1.

Let’s look at an example of a log transformation. The origin and

90 The process always works better for
larger samples.

91 For the natural logarithms.

92 For example by adding a certain
amount to each observed value.
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meaning of the data set is irrelevant for this transformation example.

A histogram and qqg-plot of the original sample data (Figure 10):
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A visual inspection of the data shows that it is significantly different
from a normal distribution and most likely closer to an exponential dis-
tribution. So, let’s do a log transformation of the data. Once the data
has been transformed, it becomes normally distributed (Figure 11).
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Much better. Now that the assumption of normality is verified (along-
side all other assumptions), the analysis can continue.

Once the analysis is completed the data should be trans-
formed back to its original format for interpretation and re-
porting.

Figure 10: Original data

Figure 11: Log transformed data



Correlations

Correlations? explore how two or more variables are related to each
other. It attempts to assess if the changes in one variable systematically
vary with the changes in another. There is no dependence relationship
between variables (e.g., IV/DV). Most often correlations are used to look
at how variables are correlated to each other in a data set, usually with
a focus on the variable(s) of interest.

This section explores the three most common correlation tests, one
parametric (Pearson) and two non-parametric (Spearman and Kendall).
All three tests compute a correlation coefficient that can range between
-1 and 1. The closer the value is to the extreme (-1 or 1) the stronger
the relationship is.

e < 0 - indicates a negative correlation, meaning that the as the value
of z increases, the value of y decreases.

e 0 - indicates no association.

e > 0 - indicates a positive correlation, meaning that as the value of z
increases, the value of y increases as well.

Null hypothesis (Hp): There is no correlation between the two vari-
ables. In this case the correlation coefficient (which depending on test
can be 7, g, or 7) is zero or close to zero.

The data set used in the examples below is called mtcars and is avail-
able in R example datasets. The data, covering 11 variables describing
cars, was extracted from the 1974 Motor Trend US magazine (Table 5).

The first few rows of the data set are shown in Table 6.

The question asked is: Is there any relationship between mpg and wt?
That is, is there any correlation between the car’s weight and its fuel
efficiency?

93 Remember, Correlation does not im-
ply causation!
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Variable  Description

Table 5: Description of variables

mpg Miles/gallon (US) in the mtcars dataset
cyl Number of cylinders
disp Displacement (in cubic inches)
hp Horsepower
drat Rear axle ratio
wt Weight (in 1000 1b)
gsec 1/4 mile time
\& Engine (0-V, 1-Line)
am Transmission (0-automatic, 1-manual)
gear Number of forward gears
carb Number of carburators

mpg cyl  disp hp  drat wt  gsec Vs am  gear carb
Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4 Wag 21.0 6 160 110  3.90 2.875 17.02 0 1 4 4
Datsun 710 22.8 4 108 93 3.85 2320 18.61 1 1 4 1
Hornet 4 Drive 214 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
Sportabout
Valiant 18.1 6 225 105  2.76  3.460 20.22 1 0 3 1

Table 6: First few rows of the mt-

Pearson Correlations Test cars dataset

Parametric test used for two interval or ratio variables. The test requires
the following assumptions to be met:

e Data is bi-variate normal;
e The relationship between variables is linear.

Before running the test, we verify the assumptions for the Pearson

Correlations®* test. 94 An issue with the Pearson corre-
lations test is the fact that outliers
To test normality we use the Shapiro- Wilk test. can negatively impact the test re-

sults. Therefore, an analysis of outliers
should be performed for the sample be-
Shapiro-Wilk normality test fore the test

data: my.cor$mpg
W = 0.95, p-value = 0.1

Shapiro-Wilk normality test

data: my.cor$wt
W = 0.94, p-value = 0.09
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The results show that the distribution of data for both variables is
not significantly different from the normal distribution (both p-values
are > 0.05), thus verifying the assumption of normality.

Besides using Shapiro-Wilks, data normality can be analyzed using
histograms, q-q plots, and the values of skewness and kurtosis for each
data set. These alternative ways of studying a data set’s normality are
exemplified for other analyses.

The linearity assumption can be visualized by generating a scatter
plot representation with one variable on the X axis and the other variable
on the Y axis.

30

Miles/Gallon
20

Looking at the scatter plot (Figure 12) the assumption of linearity
seems to hold because the relationship between the two variables seems
to be linear along the red line (regression line). Should the pattern of
points show a different trend (e.g., curve), the relationship between the
two variables is not linear and therefore other correlation tests should
be used to analyze it.

With the assumptions verified, let’s run the Pearson Correlations test.

Pearson's product-moment correlation

data: my.cor$mpg and my.cor$wt
t = -9.6, df = 30, p-value = 1le-10
alternative hypothesis: true correlation is not equal to O
95 percent confidence interval:

-0.9338 -0.7441

sample estimates:

cor
-0.8677

The p-value < 0.05 suggests that there is a significant correlation
between mpg (fuel efficiency) and wt (car’s weight).

Spearman Correlations Test

Non-parametric test used for two interval, ratio, or ordinal type vari-

ables.

Figure 12: Scatterplot  of

miles/gallon (mpg) vs.
(wt)

weight
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Because the Spearman Correlations test does not have any assump-
tions about the data, it can be run directly.

Spearman's rank correlation rho

data: my.cor$mpg and my.cor$wt
S = 10000, p-value = le-11
alternative hypothesis: true rho is not equal to O
sample estimates:
rho
-0.8864

Based on the computed p-value < 0.05 it can be concluded that the
two variables are significantly correlated to each other.

Kendall Correlations Test

Non-parametric test used for two interval, ratio, or ordinal type vari-
ables.

Because the Kendall Correlations test does not have any assumptions
about the data, it can be run directly.

Kendall's rank correlation tau

data: my.cor$mpg and my.cor$wt
z = -5.8, p-value = 7e-09
alternative hypothesis: true tau is not equal to O
sample estimates:
tau
-0.7278

Based on the computed p-value < 0.05 it can be concluded that the
two variables are significantly correlated to each other.



Chi-Square Test

The Chi-Square Test applies to nominal/categorical variables. It has

two forms:

e A one-way classification to estimate how close an observed distri-
bution is to an expected distribution. This type of test is called a
goodness-of-fit test.

e A two-way classification to estimate whether two variables from the
same population are related or not. This type of test is called a

contingency test or test of independence.

The dataset described below will be used to exemplify both types
of analyses. It contains all hospital discharges in New York State in
1993 (12,844 records) for patients admitted with an Acute Myocardial
Infarction (heart attack) who did not have surgery. The data is defined
as shown in Table 7.

Let’s take a look at how the data looks like by listing the first few
rows of the dataset (Table 8).

Goodness-of-Fit Test

Looks at a single categorical variable from a population and attempts
to assess how close to or consistent with a hypothesized distribution the

actual distribution of that variable is.
Null hypothesis (Hp): The data follows the theoretical distribution.

Before running the analysis, let’s look at a basic descriptive statistic,
frequency analysis.

Running the chi-square goodness-of-fit test for the gender variable
will attempt to test for equal counts in every cell of the design.

Chi-squared test for given
probabilities

data: table(my.ha$gender)
X-squared = 570, df = 1, p-value <2e-16
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Variable Explanation

age Patient age in years

gender Patient’s gender, coded M for males and F for females
diagnosis Code based on ICD classification

drg Diagnosis Related Group (121 - with complications

who did not die; 122 - without complications who did
not die; 123 - patients who died)

los Hospital length of stay

died 1 if the patient died in the hospital; 0 if not

charges $ amount of hospital charges

diagnosis gender drg died charges los age
41041 F 122 0 4752 10 79
41041 F 122 0 3941 6 34
41091 F 122 0 3657 5 76
41081 F 122 0 1481 2 80
41091 M 122 0 1681 1 55
41091 M 121 0 6379 9 84

Given the small p-value, the null hypothesis can be rejected and it
can be considered that the alternative is true.

Example of how to write it up:

The null hypothesis stating that patients are equally distributed across
genders, x2(df = 1) = 573.48,p < 0.001 is rejected. Therefore, there are
significant differences between the expected number of patients for each
gender and the observed number.

Observed frequencies can help explain the direction of the relationship
for the possible underlying explanation or reason. This explanation can
be added to the text if relevant for the study.

Test of Independence

In this case the Chi-Square Test is used to determine if a significant
relationship exists between two categorical variables. The test compares
the frequency of each category of one of the variables to the frequency
for each of the categories of the other variable.

In this example we will try to find if there number of patients deaths
is in some way related to their gender. Therefore, we will be testing the
null hypothesis:

The null hypothesis (Hp): There is no relationship between gender
and the patient dying in the hospital.

Table 7: Variables in the heart
attack data set

Table 8: First few rows of the
heart attack data set
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Gender Freq

Table 9: Gender variable fre-
F 5065 quencies
M 7779

Let’s look at some cell counts first. An idea about how these look like
will be useful later when compared with expected cell counts computed
from the statistical test.

0 1

Table 10: Gender count and Died

F 4298 767 (0 = no, 1 = yes) by gender vari-
M 7136 643

able counts

Now let’s run the test:

Pearson's Chi-squared test with Yates'
continuity correction

data: table(my.ha$gender, my.ha$died)
X-squared = 150, df = 1, p-value <2e-16

The obtained p-value < .05 indicates that the null hypothesis (indi-
cating independence) can be safely rejected and the alternative hypoth-
esis (indicating the existence of a relationship between gender and died)

should be accepted.

If the null hypothesis were true, the expected counts are shown in
Table 11, compared to the observed frequencies shown in Table 10.

0 1

Table 11: Expected frequencies
F 4509 556
M 6925 854

A mosaic plot (Figure 13) can help visualize the relative cell sizes.

Now let’s look at a chi-square analysis when at least one of the vari-
ables has more than one level. In this case we will be using the drg

variable?®. 95 The drg (Diagnosis Related Group)
) . . has three levels: 121 - with complica-
The cell counts in this case are shown in Table 12. tions who did not die; 122 - without

complications who did not die; 123 -
patients who died.

121 122 123

Table 12: Gender count and Di-

F 2528 1970 767 agnostic Related Group variable
M 3059 4077 643

counts

Running the test returns the results shown below.

Pearson's Chi-squared test

data: table(my.ha$gender, my.ha$drg)
X-squared = 280, df = 2, p-value <2e-16
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Figure 13: Mosaic plot of gender

w
vs. age

Gender

Died in hospital

And the mosaic plot is presented in Figure 14.

Table 13 shows the expected frequencies when the null hypothesis
(Hp) is true. Compare them with the observed frequencies shown in

Table 12.
121 122 123
Table 13: Expected frequencies
F 2124 2385 556
M 3263 3662 854

Example of how to write it up:

The null hypothesis stating that there is no relationship between gender
and diagnosis related group classification, x?(df = 2) = 283.43,p < 0.001
is rejected. Therefore, the differences between the number of males and
females in the different diagnosis related group are significant.



Gender

121

122

123
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Code

Figure 14: Relationship between
Gender and Diagnostic Related
Group (drg)






The t-Test

Parametric test of group differences. It is used when:

o There is a single predictor/independent variable (IV);

e The predictor/independent variable is measured on a nominal scale
and can have only two values;

o The criterion/dependent variable is measured on an interval or ratio

scale.

Independent Samples t-Test

Used when the observations collected under one treatment condition
are not related to the observations collected under the other treatment
condition. For example, the independent samples ¢-Test is used when
randomly selected subjects are exposed to two different experimental
conditions (IV) and we want to know if the two groups are or are not
different on some characteristic (DV).

The following assumptions must be met to use the independent sam-
ples t-Test:

e Normally distributed data.
¢ Randomly selected samples;
e Samples are independent;

Data normality can be verified by looking at the distribution of the
data (histograms) or through a test of normality. F or Levene’s tests
can be used to test equality of variances.

The test computes the probability of error for rejecting the null hy-
pothesis of no difference between the two means. Therefore, the p-value
reported by the t-Test represents the probability of being wrong in ac-
cepting the research hypothesis (alternative hypothesis) that a difference

in means exists.
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Gender Height

67
F 67
F 60
M 72
M
M

71
67

An example: consider studying the differences in height between
males and females of the homo sapiens species. We measure 100 in-
dividuals, 50 females (F) and 50 males (M). An excerpt of the height
measurement data is presented in Table 14.

The null hypothesis (Hp): In the population there is no difference
between male and female heights.

The first step in data analysis is to familiarize oneself with the data.
So, let’s take a look at the some summary statistics.

Gender Height
F:50 Min. :60.
M:50 1st Qu.:67.
Median :69.
Mean :69.
3rd Qu.:72.
Max. :79.

O NP O OO

Testing Assumption of Normality

As an example, we will work through the most common options to test
the normality of a dataset.

Distributions

Based on the histogram plots (Figure 15) the data seems to be rel-
atively close to a bell-shaped distribution®®. In this case, while the re-
semblance to a bell shape may be more difficult to observe, it is because
of the small number of data points available for analysis. The more data
points in the sample, if the sample distribution is close to the normal
distribution, the closer the histogram would be to the bell-shaped curve
of the normal distribution. While the visual checks are fine, let’s take a

closer look at sample data normality.
qq-Plots

As Figure 16 shows, the data points form a fairly straight line for both
males and females, which suggests the conclusion that the sample data
for the two groups is normally distributed. The slight S-shaped curve is
an indication of some departures from normality, but a visual inspection

Table 14: Excerpt from the
height data set

96 The histograms for Males and Fe-
males may look different because of
possible differences between the num-
ber of bars used to represent the data.
This is due to the way R computes the
number of bins to use for data repre-
sentation of a data set.
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Figure 15: Histogram of male and
female heights

Figure 16: qg-plots of height data
by gender.
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Skewness Kurtosis
Females -0.4309 2.828
Males -0.3150 3.284

comparing the data points curves with the red straight diagonal lines
suggests that these departures are not significant. Nevertheless, to be
sure, let’s not rely on visual clues alone.

Skewness and Kurtosis

The data in Table 15 shows that for females the data is slightly skewed
to the left and playtkurtic (kurtosis < 3). The sample of males shows
a similar situation. While numbers offer a bit more detail than visual
representation, let’s go a step further and test data normality using a
more specific statistical test.

Shapiro-Wilk Test

Shapiro-Wilk normality test

data: my.F
W = 0.96, p-value = 0.06

Shapiro-Wilk normality test

data: my.M
W = 0.97, p-value = 0.2

A p-value > 0.05 indicates that the null hypothesis cannot be rejected
and therefore it should be concluded that the samples follow a normal
distribution.

The t-Test

Welch Two Sample t-test

data: Height by Gender
t = -11, df = 97, p-value <2e-16
alternative hypothesis: true difference in means is not equal to O
95 percent confidence interval:

-7.13 -4.91

sample estimates:
mean in group F mean in group M

66.40 72.42

The output shows the probability p (p-value) that the ¢ statistics
would be this large or larger in absolute value (without the - sign) if the
null hypothesis is true. For this analysis the value of p is so small?” that
there is practically no chance that the null hypothesis is true. Therefore,
the conclusion is that, on average, there is a significant difference in
height between males and females.

Table 15: Skewness and kurtosis
of height data

97 The value of the p-value is so small
that R considers it, for the purpose
of this test, indistinguishable from
0 and thus represented as 2.2e-16
(0.00000000000000022). R can repre-
sent smaller numbers, but for all in-
tents and purposes, unless one needs
to work with very, very small p-values,
this value can be effectively considered
equal to 0.



QUANTITATIVE RESEARCH BY EXAMPLE wversion : 1.0.0 {8} 65

Finally, here is an example of how to write up the results in a publi-
cation.

An independent-samples t-Test used to analyze the data revealed a
significant difference in height between males and females, t(97.193) =
-10.765; p < 0.001. The sample means show that males are significantly
taller (mean = 72.42) than females (mean = 66.40).

Paired Samples t-Test

The paired-samples t-Test is used when the observation collected from
one group is related in some way to the corresponding observation in
the second group. Some examples of studies where this test would be
appropriate:

e A study using repeated measures in which case some characteristic
is measured for the same participants before and after a treatment.
In this case, because the participants are the same, an observation
before the treatment will have a corresponding observation after the
treatment, with the correspondence being provided by the partici-
pant.

e A variant of the above is a pretest-postest study, where there is a test
given to the participants before the intervention, and then another
test is given after the intervention.

e A study in which the participants are assigned to the treatment
groups using some type of matching procedure or process. That is,
one participant is exposed to one of the experimental conditions while
another participant, selected using a matching procedure is exposed
to the other experimental treatment.

e A study in which each participant is exposed to both treatment con-
ditions.

Assumptions underlying paired-samples t-test:

e DV - interval or ratio.

e IV - nominal with only two categories.

¢ Observations should be paired in some meaningful way.

e Independent observations, a participant’s score in one treatment should
not be affected by anther participant’s score(s).

¢ Random sampling drawn from population.

e Normal distribution of difference scores.

o Homogeneity of variance.

Paired-samples t-tests problems:
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e The designs that utilize this type of t-test are many times fairly weak.
e The experiment can have many confounding variables, such as the
order of treatments for a study in which each participant is exposed
to both treatment conditions, in which case it could be difficult to
determine if the outcomes are because of the treatment conditions
themselves, due to the order of treatments, or a combination of both.
¢ Repeated measures tests can also show significant confounding, es-
pecially for those that span a significant amount of time (e.g., a
semester) over which things that happen outside the treatment con-

ditions can influence the outcome.



ANOVA: Analysis of Variance

Used to compare the means of a criterion (dependent) variable between
two or more groups defined by the predictor (independent variable). The
test computes an F' value indicative of the ratio between the variation be-
tween groups to the variation within groups to determine if the observed
differences between groups on the criterion variable represent differences
between populations from which the samples are drawn (alternative hy-
pothesis, Hy). Or, if the observed differences are due purely to chance
(null hypothesis, Hy).

The analysis below will use the same data set used for the Independent
Samples t-Test. Therefore, the experiment and description is the same.

Assumptions

e Sample data is normally distributed:

— Check frequency distributions, g-q plots;

— If the data is not normally distributed, proceed, but with cau-
tion. The F test is robust to departures from normality because
the chances of Type I error are not increased by deviations from

normality;
o The groups are homogeneous (have equal variances):

— Check homogeneity of variances (Levene’s test);
— If NOT homogeneous:

*x For between-subjects variables, do not worry. F is robust and
violations are not likely to increase the chance of Type I error
significantly;

*x For within-subjects variables, worry, as the results can suggest
false significant effects;

e Independence of observations seems a reasonable assumptions since
each participant was measured individually, independent of the oth-
ers.
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Df Sum of Mean F p (sig)
Squares Square

Gender 1 906.0 906.0 115.9 <.000
Residuals 98 766.2 7.8

Testing Normality

Normality is tested similarly to the Analysis of normality presented in
The t-Test chapter. Please follow the guidance provided in that section.

The analysis of normality presented in the t-Test chapter, using both
visual and computation methods, suggests that despite some departures
from normal distribution, the data follows a normal distribution. There-
fore, the assumption of normality is verified.

Homogeneity of Variances

Let’s use Levene’s test to look at the homogeneity of variances.

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 1 0 0.96
98

The test shows (p > 0.05) that the null hypothesis (Hp) that er-

ror variances of the criterion variable (Height) are equal across groups
(Females & Males) should be accepted.

The ANOVA Test

Df Sum Sq Mean Sq F value Pr(>F)

Gender 1 906 906 116 <2e-16
Residuals 98 766 8

Gender *okok

Residuals

Signif. codes:
0 '"#*x' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

A significance value of p < .001 suggests that the null hypothesis can
be rejected safely and the alternative hypothesis accepted. For reporting
the output should be converted to the appropriate format for the pub-
lication venue. As an example, the American Psychological Association
Manual of Style recommends the following table format (Table 16).

Table 16: ANOVA results in APA
format



MANOVA: Multiple Analysis of Variance

Used to compare means of multiple criterion (dependent) variables be-
tween two or more groups defined by the predictor (independent) vari-
able. A different data set is going to be used as an example for this
analysis. To better understand the example, the study scenario is intro-
duced below.

A research to study the effect of race stereotypical crimes was con-
ducted with 105 participants. Three identical versions of a scenario
about a crime, referencing one of three ethnicities (African-American,
Hispanic, Caucasian) were randomly presented to the participants. The
study measured?®:

e Dependent variables:

— Perceived level of punishment (“punish”);

— Perceived likelihood of committing the same crime again (“re-
peat”);

— Perceived likelihood that the reason the defendant committed the
crime was due to his/her character, or disposition (“dispos”);

e Independent variable:

— Ethnicity??.

Null Hypothesis (Hp): In the population, there is no difference in
perceived level of punishment to be administered to the defendant, per-
ceived likelihood the defendant will commit the same crime again, and
the perceive likelihood that the reason the defendant committed the

crime was due to his or her character for African-American, Hispanic,
and Caucasian ethnicities.

The analysis is a one-way MANOVA for a between groups design.

Outliers

To determine whether the data set has outliers let’s use a graphical
representation. The primary plot represents the ordered squared ro-

98 Column labels are: ethnicity, punish,
repeats, and dispos.

99 Labels used for the independent vari-
able, ethnicity, are: 0 = African-
American, 1 = Hispanic, and 2 = Cau-
casian.
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bust Mahalanobis distances against the empirical distribution function
M D?. Of the three additional graphs the first shows the data, the second
attempts to highlight potential outliers as detected using the chisg, dis-
tribution, and the third presenting the outliers by the adjusted quantile
(Filzmoser, Garret, and Reimann 2005).

Projection to the first and second robust principal components.
Proportion of total variation (explained variance): 0.9381
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Two of plots in Figure 17 show two cases, 42 and 99, as potential
outliers while the third, the outliers based on adjusted quantiles, suggests
that the dataset has no outliers. In this case, the decision is left to the
researcher. Each outlier should be analyzed individually and a decision
should be made if it is to be removed or not. The criteria used for such
decisions can range from theoretical necessity of including the possible
outliers in the analysis to the point highlighted as outlier to be a valid
data point based on an in-depth analysis of the data. In this example,
because the analysis does not conclusively highlight the two cases as

outliers, they will not be removed!%9.

Figure 17: Outliers in the dataset

100 A more extensive analysis, outside
the scope of this chapter, focused on
the two possible outliers conducted on
the dataset led to the same conclusion.
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Before conducting the analysis, assumptions of normality, homogeneity

of covariances, homogeneity of variances, and independence of observa-

tions need to be tested.

Summary statistics including skewness and kurtosis'%!.

DV: punish

Descriptive statistics by group
group: African-American

vars n mean
X1 1 24 49.33
min max range
X1 30 71 41

sd median trimmed

11.09 50.5 49.25
skew kurtosis se
0.08 -1.13 2.26

group: Hispanic
vars n mean

X1 126 57.77
min max range

X1 28 79 51

sd median trimmed

14.71 60.5 58.64
skew kurtosis se
-0.55 -0.68 2.89

group: Caucasian
vars n mean
X1 1 55 65.89
min max range
X1 46 85 39

sd median trimmed

10.54 67 65.91
skew kurtosis se
-0.04 -1.13 1.42

mad
13.34

mad
16.31

mad
11.86

01 101 Tn the output, X1 refers to the de-

pendent variable being analyzed: pun-
ish, repeats, dispos.

The output shows various basic statistics, such as the mean of the

variable, its median, mean, and so forth. Of interest here is the re-

ported swkewness and kurtosis.

The values suggest a normally dis-

tributed dataset for the punish variable for each of the three ethnic

groups. A similar analysis is performed below for the two other vari-

ables in the analysis, repeats and dispos. In each case, the skewness and

kurtosis are well within the limits.

DV: repeats

Descriptive statistics by group
group: African-American

vars n mean
X1 124 24.12
min max range
X1 21 28 7

sd median trimmed

2.17 24 24.05
skew kurtosis se
0.26 -1.24 0.44

group: Hispanic
vars n mean

X1 126 24.23
min max range

X1 20 28 8

sd median trimmed

2.25 24 24.32
skew kurtosis se
-0.3 -1 0.44

group: Caucasian
vars n mean
X1 1 55 25.53
min max range
X1 21 29 8

DV: dispos

sd median trimmed

1.99 26  25.58
skew kurtosis se
-0.21 -0.62 0.27

mad
2.97

mad
2.97

mad
1.48
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Descriptive statistics by group
group: African-American
sd median trimmed mad min

vars n mean

X1 124

X1 28

23 2.27
max range skew kurtosis
8 0.26

23
se
-1.03 0.46

group: Hispanic

IOAN GELU IONAS, MBA, PH.D.

22.9 2.97 20

vars n mean sd median trimmed mad
X1 1 26 23.46 2.04 24 23.45 1.48
min max range skew kurtosis se
X1 20 27 7 -0.15 -1.1 0.4
group: Caucasian
vars n mean sd median trimmed mad
X1 1 55 24.91 2.47 256 25.07 2.97
min max range skew kurtosis se
X1 20 29 9 -0.44 -0.84 0.33

Visual Evaluation of Data Normality

18) and his-
tograms (Fig. 19). A cursory review of the plots seem to suggest that

For analysis we produce the appropriate qg-plots (Fig.

departure from normality may exist, at least for some of the groups.
Observe the top-left plot in Fig. 18 (level of punishment for African
Americans). The points representing the data align neatly along the
diagonal line, which suggests that data is normally distributed. Other
plots show an S-shaped distribution of the data point alongside the diag-
onal, which suggests departures from normality. The histograms in Fig.
19 seem to suggest similar possible departures from normality. In this
situation further analysis is necessary to determine if the assumption of

normality is met.

Shapiro-Wilk Test of Normality

Shapiro-Wilks is used to test normality of data for each subgroup. Table
17 combines summary statistics and the Shapiro-Wilk test for the design

groups.

Table 17 shows that most of the cells (with the exception of the last
line in the table), have a low significance level that may be indicative
of the fact that even if the Shapiro-Wilk test suggests that the data is
within the normality conditions, its distribution in each cell is not as
close to the normal distribution as one would want it to be.

Multivariate Normality

The homogeneity of covariances can be analyzed using Box’s test. With
an observed significance of .2 the null hypothesis, stating that the co-
variance matrices of the dependent variables are equal across groups, is
accepted.



Sample Quantiles Sample Quantiles

Sample Quantiles
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Punish by Ethnicity

African-American Hispanic Caucasian Figure 1 8 . qq—plots
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Punish by Ethnicity

African-American Hispanic Caucasian Count Figure 19: Histograms
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Dependent  Ethnicity Statistic df Sig.
Variable
Level of African 0.97 25 0.703
punish- American
ment
Hispanic 0.94 26 0.110
Caucasian 0.97 55 0.130
Potential African 0.93 25 0.101
to repeat American
Hispanic 0.95 26 0.183
Caucasian 0.96 55 0.087
Natural African 0.95 25 0.132
disposition  American
Hispanic 0.93 26 0.079
Caucasian 0.94 55 0.005

Box's M-test for Homogeneity of
Covariance Matrices

data: variables
Chi-Sq (approx.) = 17, df = 12, p-value
=0.2

Levene’s test of equality of error variances:
Level of Puhishment

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 2 1.14  0.32
102

Potential to Repeat

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 2 0.55 0.58
102

Natural Disposition

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 2 0.65 0.52
102

Levene’s tests of equality of variances shows that the error variance
of all three dependent variables is equal across groups.

One last assumption to consider - independence of observations -
seems reasonable because the treatments were administered individu-

ally.

Table 17: Shapiro-Wilk test of
normality
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The MANOVA Test

Now that the assumptions have been tested and the results show that
the data set is appropriate for analysis, run the MANOVA test.

Df Wilks approx F num Df den Df
ethnicity 2 0.731 5.66 6 200
Residuals 102

Pr(>F)
ethnicity 1.9e-05 *x*x*
Residuals

Signif. codes:
0 's*kx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

To better understand what the results tell us let’s look at the effect
size (n?). The threshold values for evaluating the effect size (partial n?)
are .01 for small effect size, .08 for moderate effect size, and .14 for large
effect size. Any value below .01 indicates no effect.

eta”2
ethnicity 0.1452

The write-up may look like below:

A significance value p < .001, together with F(6,200) = 5.66, p < .05
and a large effect size, suggested by a partial n* = .145(> .14) for the
multivariate tests, indicate a significant multivariate effect of ethnicity
on the three dependent variables. Therefore, the null hypothesis (Hyp)
can be rejected.

Univariate Statistics

While the MANOVA multivariate statistics looks the dependent vari-
ables together, it may also be of interest for researchers to look how
ethnicity affects the behavior of each dependent variable individually in

multivariate context.

Response 1 :
Df Sum Sq Mean Sq F value

ethnicity 2 4768 2384 17.1
Residuals 102 14243 140
Pr(>F)
ethnicity 4e-07 **x*
Residuals

Signif. codes:
0 '#*kx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Response 2 :
Df Sum Sq Mean Sq F value

ethnicity 2 48 23.8 5.42
Residuals 102 449 4.4
Pr(>F)

ethnicity 0.0058 *x*
Residuals



Signif. codes:

0 '**x' 0.001 'x*' 0.01 'x'

Response 3 :

0.05 '.'

Df Sum Sq Mean Sq F value

ethnicity 2 76
Residuals 102 553
Pr(>F)

ethnicity  0.0014 xx*
Residuals

Signif. codes:

37.8
5.4

0 '*¥x' 0.001 'x*x' 0.01 'x'

Level of Punishment

Partial eta”™2
ethnicity 0.2508
Residuals NA

Potential to Repeat

Partial eta”2
ethnicity 0.09601
Residuals NA

Natural Disposition

Partial eta”2
ethnicity 0.1203
Residuals NA

6.97

0.05 '.'
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The univariate statistics analysis show that ethnicity has univariate

effects on all three dependent variables as the significance p values for

all three dependent variables are < .01. For effect size, ethnicity shows a

large effect size on the Level of punishment (punish) (partial n? = .251),

and moderate effect size on the other two dependent variables, Potential

to repeat (repeat) and Natural disposition (dispos), which have values of

partial n? = .096 and .12 respectively.






Multiple Linear Regression Analysis

Linear Regression is used to study/describe the predictive relationship
between one criterion (DV) wvariable and one or more predictor (IV)
variable(s). The procedure can be used to either explore the predictive
relationships between a set of variables or to test a causal model. It can
be applied when:

e The dependent variable is continuous;
o The independent variable(s) is continuous, discrete or categorical.

It is a highly flexible procedure, especially helpful in non-
experimental research in the social sciences field where re-
searchers often deal with naturally occurring variables'92. The
procedure allows researchers to determine if a given set of variables (pre-
dictors) is useful in predicting a criterion variable.

The intent of the linear regression analysis is to find the best fitting
line of a set of data points. Remember, the simple regression equation
is of the form:

Y =a+bX

It is the equation representing a straight line in the two dimension
plane. In this equation, Y is the criterion variable (the response), X
is the predictor variable, a is the intercepti®3, and b is the slope of the
line.

Multiple linear regression expands on the simple linear regression
model and attempts to account for how multiple predictors contribute
to the value of the criterion variable. In this case the question has the

form:

104

The question is still one of straight line™”*. The b; coefficients repre-

102 Variables measured as they natu-
rally occur and are not manipulated in
any way by the researchers.

103 The value of y when X = 0, or the
point where the line intersects the Y
(vertical) axis.

104 Using algebra, we can rewrite the
equation as:

Y=a+(bl+b2+...+bn)X

which is similar to the previous equa-
tion (b =by+bs+ ...+ bn)
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sent the contributions of each individual predictor.

Multiple regression allows researchers to:

o FExplore the relationship between the criterion variable and the pre-
dictor variables as a group and determine whether the relationships
is statistically significant;

e Determine how much of the variance of the criterion variable can be
accounted for by the predictors, individually and as a group;

e Determine the relative importance of the predictor variables.

Of note is the fact that regression analysis cannot provide
strong evidence of a causal relationship between the variables
but rather show that the findings are or are not consistent with
the causal model under study!%. In case of modeling causal rela-
tions, if none of the regression coefficients were found to be significant,

the model failed to pass a test106.

When designing the study researchers may not have sufficient knowl-
edge to determine how the predictors affect the criterion variable. The
model they build is their best guess based on their prior knowledge!07
of the problem they are investigating. For this reason, to find the model
that best represents the phenomena, regression analysis offers multiple
pathways for conducting the analysis. This example looks at the enter,
forward, and backward regression models.

The enter model includes all predictors while the stepwise regression
forward and backwards models attempt to reach a more parsimonious
(see Occam’s Razor for details) model by reducing the number of pre-
dictor variables while attempting to explain as much as possible of the
criterion variable. The differences in the quality of the predicted scores
can be studied by looking at the three models side by side. A compara-
tive analysis of the forward and backward models will offer the opportu-
nity to validate the results of the analysis when the two methods reach
the same solution (regression equation) or if they are very close.

The enter model, as its name suggests, will include all predictors in
the regression equation from the beginning. The forward model will
enter the variables in the model one by one, starting with the predictor
that has the highest order partial correlation with the criterion variable,
and then calculating the regression statistics. The process continues
by adding the remaining predictor variables, one by one, in descending
order of their partial correlations with the dependent variable. This
continues as long as the addition of a new predictor variable to the

1108 109

model brings significan changes in the model’s predictive power

The backwards model starts with the full model''? and continues by

105 The correlational nature of the data
leads to multiple possible ways of inter-
preting the results.

106 Alternatively, if significance was ob-
served, the causal model passed an at-
tempt at disconfirmation.

107 Based on existing literature, prior
experience, other experiments they
have conducted, etc.

108 The goodness of fit of an estimated
statistical model is measured by ei-
ther the Akaike’s Information Criterion
(AIC) or the Bayesian Information Cri-
terion (BIC). The lower the value or
AIC or BIC is, the better the model
is. When the AIC/BIC of two succes-
sive models are compared and found
significantly different, the model with
the better (lower) values is retaind.

109 The predictive power of the model
is reflected in the value of R2.

110 T ha carma ramdal ac +ha ormtonr vl al
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removing predictor variables one by one, in the reverse order of their
partial correlation with the criterion variable. The process continues
until the updated model does not improve on the previous one.

Prior to the analysis we should familiarize ourselves with the data.
Here are a few things to do to better understand what we are working
with.

 Check for errors!!!;

e Outliers;
e Unusual distributions;
e Clustering or systematic pattern5112;

e Anything else unexpected.

Assumptions

In regression analysis assumptions are intertwined with the analysis it-
self. That is, some of the assumptions can only be verified once the
model has been defined and after the analysis has been run and the
results computed. Regression analysis assumptions are:

e Linear relationship between the predictor (IV) variables and the cri-
terion (DV) variable

— Detected using plots of the residuals!!?

against each continuous
predictor and predictive values;
— The assumption is violated when large or systematic deviations

114

of the fit line are observed around the O-line A violation is

indicative of a non-linear relationship.
e Correct model specification

— Detected by performing the R Squared Change test to determine
if adding a variable (given that the theoretical model supports it)
to the regression model significantly increases R Square.

— If the R Square Change test is significant, the variable should be
included in the regression model. Otherwise, if the test is not
significant, do not include the variable.

o No measurement error in the predictor (IV) variables

— Detected by examining the reliability coefficients for the predictor
(IV) variables;
— Inadequate reliability if the coefficients are less than .70.

e Homoscedasticity, residuals have constant variance

H1E.g., data entry, missing values, etc.

H21f the data groups together in cer-
tain ways, forming areas where data is
concentrated.

113 The residual is the difference be-
tween the observed value of the depen-
dent variable and the value predicted
by the regression model. The mean of
residuals is zero, as is their sum. Resid-
uals help us understand how well the
regression line (equation) approximates
the data from which it was generated.
114 Representing the mean of the resid-
uals.
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— Detected by plotting the residuals against each continuous predic-
tor and predicted values;

— Relationship between variability of the residuals and either the pre-
dictor (IV) variables or the predicted values indicate heteroscedas-
ticity.

o Residuals are independent, reflecting a clustering or serial dependency

problem

— Clustering is detected by using plots of residuals against the group-
ing/cluster variable using Box Plots;
* The clustering assumption is violated if there is variability in
the median value of the residuals in each group;
— Serial dependency is detected by looking at the measure of auto-

correlation using the Durbin-Watson test;

x The serial dependency assumption is violated if the Durbin-
Watson test results in values less then or greater than 2.

e Normal distribution of residuals**®

— Detected by using normal probability plots and histogram plots of
residuals;

— Non-normal distribution of residuals indicate a violation;

— Residuals that fall far from the straight line indicate a violation.

The Study

A study was conducted in a Midwestern state in the US to gauge con-
sumers’ interest in purchasing and consuming the different kinds of
nuts'16 available on the market. The primary focus of the study was
to attempt to predict future market behavior based on consumption of,
familiarity with, and interest in the product. The data was collected us-
ing a survey-type instrument. With the exception of demographic data,

the questions used 5-point Likert scales.

For the purpose of this analysis, three variables, defined from the raw

dataset, were chosen:

o Interest in buying raw nuts from farmers markets or grocery stores;

 Interest in buying prepared/semi prepared products that contain nuts
at farmers markets or from grocery stores;

e Interest in consuming, in restaurants, prepared food that contains

nuts;

The questionnaire was freely distributed during a local festival. A
number of 232 responses were collected.

1151n case of linear regression, a plot
of residuals should look as a random
cloud of points alongside the regression
line. If a pattern is observed in how the
residuals are arranged (e.g., they seem
to align along a curve), it may be an
indication that a non-linear model may
be a better fit.

116 Chestnuts, pecans, and black wal-
nuts.
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Preliminary Steps

For all quantitative studies is always helpful to familiarize yourself with
the data, how it looks, etc. So, let’s look at the first few lines of the

dataset17. 117 Due to the large number of vari-
ables, only the firs 10 are shown.

D11 D21 D31 Fl1.1 F1.2 F13 F14 F15 Fl1.6 F2.1

Table 18: First few rows and vari-

3 4 4 3 4 4 5 4 3 3 ables of the chestnut data set.
2 3 2 3 5 5 2 2 4 4
3 5 5 1 1 1 1 1 1 3
2 2 1 2 3 4 3 3 2 2
1 1 1 2 5 5 4 5 5 2
1 1 1 2 2 2 1 1 1 3

Missing Cases

Due to the large sample available, for the purpose of this example, the
cases with missing variables were deleted list wise.

Variable Recoding

Name Type Value Description
Range Table 19: Variables included in

BuyRaw DV 3-15 Interest in buying raw nuts the analysis
Price v 3-15 How much the product’s price influences

purchase/consumption decision
Quality v 3-15 How much the product’s quality influences

purchase/consumption decision
Taste v 3-15 How much the product’s taste influences

purchase/consumption decision
LocGrown IV 3-15 How much the fact that the product is locally

grown influences purchase/consumption decision
PrepEase IV 3-15 How much product’s ease of preparation

influences purchase/consumption decision
Nutrition IV 3-15 How much product’s nutrition factor influences

purchase/consumption decision

The survey was designed to enable a detailed study of the market, for
which reason the questions used to collect the data were divided between
the three categories of products: chestnuts, pecans, and black walnuts.
To capture an overall view of the market the three categories are merged
into a single variable. This example analysis will look at the following

variables (Table 19118): 118 The value of a variable for all the
variables listed in Table 19 is deter-
The new variables described in Table 19 are computed, using an mined by summing the scores of three

questions together. Therefore, if the
Likert scale used is from 1 to 5, the
minimum value is 3 and the maximum
is 15.

addition-based model, based on the participants’ responses to survey
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questions (Table 20). Table 21 shows a few lines showing the newly

created variables.

Variable Component Questions
Table 20: Variable recoding
BuyRaw D1.1 + D2.1 + D3.1
Price F1.1 + F2.1 + F3.1
Quality F1.2 + F2.2 + F3.2
Taste F1.3 + F2.3 + F3.3
LocGrown F1.4 + F24 + F3.4
PrepEase F1.5 + F25 + F3.5
Nutrition F1.6 + F2.6 + F3.6
BuyRaw Price Quality Taste  LocGrown PrepEase Nutrition
11 9 19 19 15 10 9 Table 21: Recoded variables
7 11 13 13 6 6 12
13 9 11 11 11 11 11
5 6 9 13 9 9 6
3 6 15 14 13 15 15
3 6 6 6 3 3 5

Summary Statistics

As a first attempt to discover any possible abnormalities in the data it is
always helpful to run summary statistics on the variables in the dataset.

A cursory analysis of the data in Table 22 shows that there are no
unexpected problems with the data. For example, for all variables the
number of included cases is the same (184), meaning that there are no
missing cases, the min (3) and maz (15) represents the correct range
determined by the way the variables were computed (Tables 20 and 21).

Before moving forward we need to define the full regression model as
the decision to buy as a function of price, quality, taste, growth place,
ease of preparation, and nutrition qualities. It can be represented as a
linear relationship of the study’s predictors:

BuyRaw' = by + by - Price + by - Quality + bs - Taste
~4b4 - LocGrown + bs - PrepEase + bg - Nutrition

Outliers

Let’s look at residuals plot first (Figure 20). In this representation an

1119

outlier would be a point situated outside the £3 interva represented 119 Colored in red or highlighted.

on the vertical (y) axis. According to this test, only one of the cases is
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vars n mean sd median trimmed mad min max range skew kurtosis se
BuyRaw 1 184 9.109 3.120 9.0 9.122 2.965 3 15 12 -0.1058 -0.5286  0.2300
Price 2 184 9.277 2.591 9.0 9.324 2.965 3 15 12 -0.1676 0.0790  0.1910
Quality 3 184  11.207 2.929 12.0 11.507 2.965 3 15 12 -0.8162 0.3884 0.2159
Taste 4 184 11.636  2.932 12.0 11.986  2.965 3 15 12 -0.8755 0.4133  0.2161
LocGrown 5 184 9.924 3.245 10.0 10.040  2.965 3 15 12 -0.3064 -0.5388  0.2392
PrepEase 6 184 10.114  3.034 10.0 10.250  2.965 3 15 12 -0.4631 -0.2139  0.2237
Nutrition 7 184 10.663 3.478 11.5 10.946 3.707 3 15 12 -0.4941 -0.6215  0.2564

situated close to the -3 limit and could be considered an outlier. Because
there are other cases that are relatively close to the limits and because
the sample size is sufficiently large, further analysis should be considered
to determine if the data point is a real outlier or not. For this purpose

further testing will use Mahalanobis distances!20.

The histogram in Figure 21 suggests that there is at least one outlier
in the dataset, indicated by the highlighted bar at the far right of the
histogram. While the analysis so far tells us that outliers may exist
in the data set, it is not able to help us determine what impact these

outliers may havel?!. Computing Cooks distancel?? will provide the
means for a closer analysis of potential outliers. Figure 22 presents a

graphical representation with possible outliers highlighted.

Based on Cook’s distance, the dataset may have three outliers (ob-
servations 5, 26, and 110). Considering what we’ve learned so far about
the outliers in the dataset, we have two options:
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Case number

1. Remove the outliers from the dataset and re-run the outlier analysis

Table 22: Summary statistics for
the study variables

120 Mahalanobis distance (MD) is the
distance between two points in multi-
variate space. It measures the distance
relative to a base or central point con-
sidered as an overall mean for multi-
variate data (centroid). The centroid
is a point in multivariate space where
the means of all variables intersect.

121 Cases that may look like outliers at
first sight may not be so after a more
in-depth analysis.

122 Cook’s distance is a measure used to
estimate the influence of a data point
in regression analysis. It measures how
much deleting an observation influences
the results. Data points with a large
value of the computed Cook’s distance
are potential outliers and should be
subjected to further examination.
Figure 20: Case-wise plot of stan-

dardized residuals



86 IOAN GELU IONAS, MBA, PH.D.

o R
©
o |
©
>
2
[
=)
B % -
[T
o |
Al
o I I ——
\ \ \ \ \ \
0 10 20 30 40 50
Distances
5 140
© ~ LILAAY4
2 ] 26
S © ]
[72]
@ g
@ s _|
5 ogdul |
8 S bl m”‘ I T ‘\HH\‘ alil ‘H“\“m \M\WH\\H\‘\Hu\‘mw‘ il )L
© I [ [ I
0 50 100 150
Obs. number

to determine if the new dataset has more;
2. Investigate these outliers further and learn more about their influence
and determine what potential leverage they may have on the results

of the analysis.

If we have sufficient data points for the analysis!?3, the entire obser-
vation or record including the outliers can be removed from the data set.
Alternatively, if the removal of outliers reduces sample size too much or
if the analysis begins with an undersized sample, the outliers should be
analyzed further to determine if they should indeed be removed or if
they can be retained thus improving the relevance of the findings to the

population!24.

With this study being used as an example, we will pursue the second
option and look further into what leverage outliers may have. For that

Figure 21: Histogram of Maha-
lanobis distances

Figure 22: Cook’s distance

123 If the remaining number of records
after removing the outliers is larger
than the sample size needed for anal-
ysis. The sample size is one of the de-
ciding factors in how well the results
can be generalized to the population
the model attempts to represent.

124 Removing observations from the
dataset may have unwanted effects.
For example, when studying opinions,
by removing a record showing an ex-
treme, we may unintentionally remove
an opinion that may be relevant to the
results and affect the outcomes. That
is, outliers may be influential observa-
tions that have a reason to be kept in
the analysis. In addition to numeri-
cal analysis, the theory, literature, and
previous studies should be used as well
to guide the decision.
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purpose we can use a scatter plot representation of deleted vs. raw resid-
uals (Figure 23). If in the graphical representation all the points, and
especially those highlighted so far as outliers, align along the diagonal
of the plot area, represented as a line, it can be concluded that none of
the points representing potential outliers has a significant leverage and
that it may be reasonable to keep them in the dataset.

uals plot

Deleted residuals

-3
I

Raw residuals

While prior analysis may indicate the existence of potential outliers,
leverage analysis suggests their influence is sufficiently weak to warrant
including the observations in the analysis.

Residuals Analysis
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Normal Scores Residuals

Multiple regression analysis assumes linear relationships between the
variables included in the equation and the normal distribution of resid-
uals. When these assumptions are violated, the final conclusion drawn
may not be accurate. Normal probability plots are used to test these
assumptions (Figure 24 left). The grouping of the points close to the

125

straight line*“° supports the assumption that the residuals are normally

1.0.0 {8} 87

Figure 23: Deleted vs. raw resid-

Figure 24: Normal probability

125 The representation is a quantile-

quantile plot and is interpreted simi-

larly.
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distributed. The same assumption is also supported by the histogram
representation of the residuals (Figure 24 right).

Linearity

A simple residuals vs fitted plot can be used to test the linearity as-
sumption (Figure 25). If linearity is observed, the data points plotted
on the graph should resemble a homogeneous cloud around the center
line, which should be approximately horizontal at zero. Alternatively, a
pattern is indicative of a problem with the linear model. In this analysis,
the distribution of the points and the center line (red) suggest that a
linear relationship between the criterion and predictor variables can be
assumed.

Residuals

Fitted values

Enter or Full Model

Up to this point the preliminary analysis of the assumptions has been
conducted using the full regression model, which includes all predictor
variables. As a reminder, the regression equation for the enter model

is126:

BuyRaw' = by + by - Price + by - Quality + bs - Taste
~4b4 - LocGrown + bs - PrepFEase + bg - Nutrition

In regression analysis the correlations should be high between the
criterion and predictor variables and low between predictor variables.
There are multiple ways to look at the correlations between the predictor
variables and a wide variety of graphical representations to help the
analysis. For example, a visualization of the variable correlations is
shown in Figure 26.

Figure 25: Residuals vs. fitted
linearity plot

126 ByyRaw’ is the estimated value of
the criterion variable.
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Figure 26 shows the predictors on the diagonal, the value of the corre-
lation coeflicient between each pair of two predictors above the diagonal,
with larger font for higher correlations, and a scatter plot of each pair
below the diagonal. The numerical values of the correlation coefficients
are fairly easy to interpret. The closer the value is to 1, the higher the
correlation is. The closer the value is to 0, the lower the correlation is.
Therefore, we are looking to have low values across the board. In this
case, quality is highly correlated to taste, as indicated by the value of
correlations coefficient of 0.91.

Looking at the scatter plots below the diagonal, we want to see the
data points distributed across the plot area rather than forming a pat-
tern. Looking at the same two variables as discussed above, the scat-
terplot representation shows the points arranged close to and alongside
the red diagonal line, forming a diagonal pattern. Other scatter plots
may look more distributed, but a closer inspection shows that in some
of them the many of the points are concentrated in a pattern along the
red diagonal line.

A table representation of the correlations coefficients between the
variables in the study (Table 23) may be more helpful, especially when
it is associated with a table showing the significance levels (Table 24) of
these correlations.

The data in Table 23 suggests that the higher correlations between
the criterion variable BuyRaw and any of the predictor variables is with
Quality, at 0.47.

Looking at the correlations between the predictor variables (Table 23)
the the associated p-values'?” (Table 24) it appears that this data set
has a problem. The correlations between predictors are relatively high,

Figure 26: Predictors correlation

matrix

127 Significance levels of correlations



90 IOAN GELU IONAS, MBA, PH.D.

BuyRaw Price Quality Taste  LocGrown PrepEase Nutrition
BuyRaw 1.00 0.18 0.47 0.41 0.33 0.25 0.38
Price 0.18 1.00 0.50 0.48 0.34 0.55 0.47
Quality 0.47 0.50 1.00 0.91 0.59 0.62 0.70
Taste 0.41 0.48 0.91 1.00 0.59 0.65 0.70
LocGrown 0.33 0.34 0.59 0.59 1.00 0.63 0.67
PrepEase 0.25 0.55 0.62 0.65 0.63 1.00 0.77
Nutrition 0.38 0.47 0.70 0.70 0.67 0.77 1.00

Table Z23: V DI 1af

BuyRaw Price Quality Taste LocGrow?l ¢ f’rep%r)?se ¢ Coﬁgt?itlioorhs
BuyRaw NA 0.015 0 0 0 0.001 0
Price 0.015 NA 0 0 0 0.000 0
Quality 0.000 0.000 NA 0 0 0.000 0
Taste 0.000 0.000 0 NA 0 0.000 0
LocGrown 0.000 0.000 0 0 NA 0.000 0
PrepEase 0.001 0.000 0 0 0 NA 0
Nutrition 0.000 0.000 0 0 0 0.000 NA

Table 24: Significance levels of

for which reason their contribution is overlapping. . .
variable correlations

It has become evident at this point that the dataset has problems.
Nevertheless, the analysis can still be conducted to inform next steps.
With this knowledge, let’s look at the results of the regression analysis.

Call:
Im(formula = BuyRaw ~ Price + Quality + Taste + LocGrown + PrepEase +
Nutrition, data = my.chestnut)

Residuals:
Min 1Q Median 3Q Max
-8.162 -1.784 0.176 1.620 5.976

Coefficients:

Estimate Standardized Std. Error
(Intercept) 3.9396 0.0000 0.9405
Price -0.0607 -0.0504 0.0980
Quality 0.4736 0.4446 0.1754
Taste -0.0404 -0.0379 0.1737
LocGrown 0.0909 0.0945 0.0893
PrepEase -0.1725 -0.1677 0.1179
Nutrition 0.1629 0.1816 0.1081
t value Pr(>|tl)
(Intercept) 4.19 4.4e-05 *x*x
Price -0.62 0.5363
Quality 2.70  0.0076 **
Taste -0.23 0.8165
LocGrown 1.02 0.3102
PrepEase -1.46 0.1453
Nutrition 1.51 0.1336
Signif. codes:
0 '"x*xx' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.77 on 177 degrees of freedom
Multiple R-squared: 0.24, Adjusted R-squared: 0.214
F-statistic: 9.29 on 6 and 177 DF, p-value: 7.43e-09



QUANTITATIVE RESEARCH BY EXAMPLE wversion : 1.0.0 {8} 91

The explanatory power of this regression model is indicated the by
the value of the Adjusted R? = 0.214128 which tell us that the current
model accounts for 21.4% of the variance of the criterion variable. The

129

regression coefficients'“” can be found in the column labeled Estimate.

Using these coefficients, the regression equation is:

BuyRaw' = 3.9396 — 0.0607 - Price + 0.4736 - Quality — 0.0404 - Taste
+0.0909 - LocGrown — 0.1725 - PrepFase 4+ 0.1629 - Nutrition

Standardized 8 (beta) coefficients (the Standardized column in the
output) are an indication of the relative importance of the respective
predictor variable in predicting the value of the criterion variable. To
help us understand which of the regression coefficients may be relevant,
t-Tests are run behind the scenes to determine the significance!3? of
each b coefficient in the regression equation. In this example the last

t131

column of the outpu shows that only the Quality predictor variable

is significant at a level of significance of 0.05.

The last line of the regression analysis output shows the results of
the ANOVA test if the model has a significant explanatory power!32. In
this case the model with a p-value < 0.05 the model is significant. A
full ANOVA table for the regression model may help understand it a bit

further.

Analysis of Variance Table

Response: BuyRaw
Df Sum Sq Mean Sq F value Pr(>F)

Price 1 57 57 7.49 0.0068
Quality 1 335 335 43.73 4.3e-10
Taste 1 0 0 0.05 0.8312
LocGrown 1 12 12 1.52 0.2191
PrepEase 1 5 5 0.71 0.4008
Nutrition 1 17 17 2.27 0.1336
Residuals 177 1355 8
Price *%
Quality *okok
Taste
LocGrown
PrepEase
Nutrition
Residuals
Signif. codes:

0 '*¥xx' 0.001 'x*x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

An analysis of the full ANOVA table!?3 suggests Price as being a
significant predictor besides Quality. Looking at the last column of the
table, the p-values for each of the predictor variables are different from
those listed in the regression analysis output. The differences are in-
dicative of overlap between the predictors which is an indication that
the variables are not perfectly uncorrelated. The largest differences are

128 The value is computed together
with the other parameters and made
available in the output. In this case (R
output) it is in the notes at the bottom,
the line titled “Multiple R-squared”.

129 The values that represent the b co-
efficients in the regression equation.

130 If the coefficient is significantly dif-
ferent than 0.

131 The column titled Pr(>|t|) lists
the significance (p-value) of the coeffi-
cients. The asterisks indicate the level
of significance based on legends shown
in theSignif. codes line below the table.
132 The ANVOA test is run to deter-
mine if the null hypothesis holding that
all coefficients are 0 holds or not. If this
null hypothesis can be safely rejected (p
< 0.05), then the regression model de-
fined in the analysis has a significant
explanatory power.

133 As a reminder, total variance is the
sum of two variances: the variance due
to the predictors (model) and the vari-
ance due to error. In the ANOVA out-
put it is represented by the sum of
squares (column “Sum Sq”). The value
for each variable indicates the variance
accounted for by the respective predic-
tor. The “Residuals” line at the bottom
lists the unexplained (error) variance.
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134 Considering that the stan-

observed for the two variables in question
dardized coefficient of the Quality predictor is significantly larger than
the one of the Price predictor, Quality is probably more relevant than

price in this analysis.

The variance inflation factor (VIF)135 can be used to study predictor

136 among predictors. The higher the value of the VIF

multicollinearity
is, the more significant the collinearity. The VIF values for the current

model are listed below.

Price Quality Taste LocGrown

1.542 6.310 6.201 2.007
PrepEase Nutrition

3.059 3.379

There are multiple ways to interpret the results in this output One
way would be to analyze the raw VIF values and flag those with values
greater then 10. The output indicates that all model predictors respect
the collinearity assumption.

Another way is to compute square root of the VIF values and flag
those with values greater then 2 as having collinearity issues (output of
running this computation is included below). The output below flags
Quality and Taste as being collinear.

Price Quality Taste LocGrown

FALSE TRUE TRUE FALSE
PrepEase Nutrition

FALSE FALSE

Given that there is no agreement in the analysis, alternative mod-
els'37, discussed in the next sections, could be helpful in bringing some
clarity to these issues.

With a 21.4 % explanatory power this model is not capable of explaining
much of the criterion variable variability using a linear combination of
all predictor variable even though the model is significant overall.

As the model output suggests any prediction made using this model
will be relatively weak. Further analysis suggests that the model’s pre-
dictors share a lot of explanatory power with overlapping and collinearity
being the main issues. Additional models can be useful in understanding

138

if different, more parsimonious °® models, can explain a larger percent-

age of the variance of the criterion variable.

Backward Model

As an example, let’s run a backward stepwise regression to see if a
more parsimonious model exists and how that model might look like. In

134 Common sense tells us that usually
quality is correlated with price in the
sense that higher quality usually de-
mands higher prices while higher prices
WORYINGT EcIErA R BARHY Dighk auals
Wetficients of the regression equation
are inflated. VIF is a measure of how
much the variance is inflated due to
multicollinearity.

136 Multicollinearity happens when two
or more predictors are correlated with
each other. It occurs in many studies,
especially when the researchers only
observe a process and do not have con-
trol over the variables. Significant mul-
ticollinearity can also be an indication
of potential issues with the instrument
used to collect the data.

137 For example, forward and backward
stepwise regression models.

138 With fewer predictors.



backward stepwise regression the analysis starts with the most complex
model, which includes all predictors. It then starts to build new mod-
els by removing predictors in reverse order of their partial correlations
with the criterion variable. This process continues until a new model
brings no significant improvement in the model’s explanatory power
The predictors are being considered one by one to determine their effect
when removed from the regression equation. The predictor who’s dele-
tion brings the smallest reduction in R? is the candidate for removal in

the next iteration..

Start: AIC=381.4

BuyRaw ~ Price + Quality + Taste + LocGrown + PrepEase + Nutrition

Df Sum of Sq RSS
- Taste 1 0.4 1355
- Price 1 2.9 1358
- LocGrown 1 7.9 1363
<none> 1355
- PrepEase 1 16.4 1371
- Nutrition 1 17.4 1372
- Quality 1 55.8 1411

Step: AIC=379.4

BuyRaw ~ Price + Quality + LocGrown + PrepEase + Nutrition

Df Sum of Sq RSS
- Price 1 2.9 1358
- LocGrown 1 7.8 1363
<none> 1355
- Nutrition 1 17.3 1373
- PrepEase 1 17.9 1373
- Quality 1 135.8 1491

Step: AIC=377.8
BuyRaw ~ Quality + LocGrown +

Df Sum of Sq RSS
- LocGrown 1 8.8 1367
<none> 1358
- Nutrition 1 17.2 1376
- PrepEase 1 25.3 1384
- Quality 1 134.2 1492
Step: AIC=377
BuyRaw ~ Quality + PrepEase +

Df Sum of Sq RSS
<none> 1367
- PrepEase 1 20.5 1388
- Nutrition 1 26.2 1393
- Quality 1 164.2 1521
Call:

Im(formula = BuyRaw ~ Quality

Residuals:
Min 1Q Median 3Q

AIC
379
380
380
381
382
382
387

AIC
378
378
379
380
380
395

PrepEase + Nutrition

AIC
377
378
378
379
393

Nutrition

AIC
377
378
379
395

+ PrepEase + Nutrition, data

Max

-7.779 -1.819 0.221 1.842 6.002

Coefficients:
Estimate Std. Error t value
(Intercept) 3.8264 0.8458 4.52
Quality 0.4470 0.0992 4.51
PrepEase -0.1764 0.1074 -1.64
Nutrition 0.1929 0.1038 1.86
Pr(>ltl)

(Intercept) 1.1e-05 *x**
Quality 1.2e-05 *x*x
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139 The goodness of fit of an estimated
statistical model is measured by ei-
ther the Akaike’s Information Criterion
(AIC) or the Bayesian Information Cri-
terion (BIC). The lower the value or
AIC or BIC is, the better the model
is. Therefore, stepwise regression will
compute a value for the AIC or BIC
for each successive regression model
and compare it with the one computed
for the preceding model. If the value
is significantly lower, meaning a sig-
nificantly better fit of the model, the
model is retained. Otherwise, the anal-
ysis is stopped and the last retained
model is considered to be the best fit.
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PrepEase 0.102
Nutrition 0.065 .

Signif. codes:
0 '#*kx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.76 on 180 degrees of freedom
Multiple R-squared: 0.233, Adjusted R-squared: 0.22
F-statistic: 18.2 on 3 and 180 DF, p-value: 2.32e-10

The output above shows a trace of the successive models considered
in the analysis. It starts with the full model**? and continues to remove
the predictor with the smallest contribution to the variance until a more
parsimonious model does not improve its predictive power significantly.
The criteria used is AIC, listed at the top of each iteration. In this case,
by using backward stepwise regression we were able to slightly improve
the predictive power of the model by using only three of the predic-
tors: Quality, PrepEase, and Nutrition. Model summary shows that the
predictive power increased to 22% (from 21.4% of the full model).

Summary

The study exemplified here was designed as an exploratory study. For
that reason any outcome was expected despite the fact that the re-
searchers believed, based on existing literature, that the six predictor
variables would be fairly reliable in explaining consumers’ level of inter-
est in buying raw products.

The multiple linear regression analysis has produced weak models,
with at most 22% explanatory power. During the analysis it became
evident that predictor collinearity and overlapping seems to be a signif-
icant issue with this analysis. Stepwise regression was able to offer an
improved model, although the 0.8% increase in explanatory power is too
small to be meaningful in real life.

The results of the analysis seem to suggest that the study’s design
was flawed and that the current data does not have sufficient potential
to explain market behavior and cannot be used as predictor for future
behavior. Nevertheless, it has provided the foundation for further studies
using a revised data collection instrument.

140 The predictors are sorted in ascend-
ing order of their contribution to the
total variance, represented by the “Sum
of Sq” column.



Multiple Logistic Regression

Logistic regression analysis responds to the needs in many domains to
predict a categorical binary response!! based on two or more predic-
tors. For example, for a response (criterion) variable with two possible
values (e.g., Yes or No), logistic regression offers the possibility to at-
tach probability values to the responses given a set of predictors. That
is, logistic regression helps understand how multiple predictor variables,
together, predict the response or criterion variable membership in one
or the other of the two categories of the dependent variable.

The dichotomous nature of the response variable prevents the calcu-
lation of a numerical value, as it is the case with regular regression tests.
Instead, it uses the binomial probability theory, with only two values to
predict, and the maximum likelihood method to generate a best fitting
equation that is used to classify the data to the appropriate category
based on the regression coefficients.

The basic formula for Logistic Regression is similar to the one used
in Linear Regression:

logit(P)=a+b-X

For multiple predictors, the formula changes to:

logit(p) =Bo+P1- X1+ B2 Xo+ ...+ fn - X

In the equation above, p is the probability the outcome or character-
istic of interest is attained, X; represent the predictors, and (; represent
the relative contribution of these factors.

The dependent variable in Logistic Regression is a logit, the natural

logarithm of the odds:

P
1-P

logit(p) = log(odds) = In( )

141 A binary response takes values 0
or 1. For example, between the right
or wrong answer, between survival and
death, or between to buy and not to
buy.
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where P is the probability of predicting a 1 (attain the outcome of
interest).

In the end, what we are interested in is the probability (P) that the
desired outcome occurs. For that, we need to do a little bit of simple

algebral42:
In(:£5 = a+bX)
P _ ea+bX
i-P Lo
f)::iigg:ﬁ?
The Study

To understand a bit better where and how logistic regression is use-

ful, let’s look at an example study designed to investigate the effects of
43 on learners’ performance on causal reasoning tasks.
d144,

self-explanation!
Specifically, this study was designed as a completely randomize

145 oxperiment that

two group (control and treatment), between-subjects
used self-explanation to elicit causal mechanism explanations when rea-
soning about causally linked events. The target field was medicine, a
domain that relies heavily on the understanding and use of extensive

and complex causal processes. The overarching research question was:

In the medical field, when learners are reasoning causally, does us-
ing self-explanation to elicit an explanation of the causal mechanism(s)
improve, on average, learners’ performance on tasks involving such rea-

soning processes?

Based on the existing literature, the study used prompts to train
learners to self-explain before answering a question. That is, to think
about and attempt to formalize in writing the principle(s) involved in
solving practice problems presented to them. For the purpose of this
experiment, the participants were randomly assigned to one of the two
groups, control or treatment. The participants in both groups were asked
to answer the same multiple choice questions in the training stage, with
the difference that those participants in the treatment group were asked,
in addition to answering the question and before choosing an answer, to
formally explain the causal mechanism behind the problem posed in the
question. The participants in the control group were only prompted to
choose an answer, without being prompted to explain the mechanism
first. It was hypothesized that the participants that had a chance to
practice self-explanation (those in the treatment group, who were asked
to explain before responding) would perform better, on average, than the
control group on a subsequent similar problem, for which the prompt was
removed and all participants, in both groups, performed the same task.

142 While they may look scary at first
sight, the computations are simple and
will be explained in context later in this
chapter.

143 Self explanation is an explanation a
learner generates on his or her own, as
opposed to explanations provided by an
external source (e.g., book, instructor,
peer).

144 The participants were randomly as-
signed to one or the other of the two
experimental groups.

145 Because each participant is mem-
ber in only one of the two experiment
groups: control or treatment.
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Learners’ performance was measured using a single multiple-choice
question with only one correct answer for which learners first selected
an answer they believed to be correct and then explained the mechanism
that supported their choice. An opportunity to change the answer was
offered to the participants after they submitted their explanation of the
phenomena with a request to explain why the new answer is better than
the previous one. The instrument also assessed the participants’ prior
knowledge related to the topic used in testing, both as self-assessment
and, more objectively, through a set of multiple choice questions. In
addition, age group, gender, income group, undergraduate magjor, and
intended medical speciality were collected as demographic variables.

About 350 first- and second-year medical students were invited to
participate in the study and processes were set in motion to convince
enough students to participate to at least meet the minimum sample size
of about 100146, In the end, the recruitment efforts generated a sample
of 117 valid responses.

This example will cover only a subsection of the full study that was
answered using logistic regression and will use a curated data set. Data
manipulation and transformation procedures used to generate the data
set used in this example are not covered. This example will focus on the
following research question:

Does the practice of self-explanation as causal mechanism elicitation
technique affects, on average, learners’ performance on causal reasoning
tasks?

The variables included in the model are:

Categorical Performance Score (criterion/response, nominal scale) -
calculated assigning a value of 0 to a wrong answer choice or a value of
1 to the correct answer choice.

Ezperiment Group (predictor, nominal scale) - determined by the
group (control or treatment) to which the participant was randomly
assigned to.

Year of Study (covariate) - introduced as covariate to control for
potential differences in performance due to where the student is situ-
ated on the progression timeline in medical school (first or second year
medical students). This attempts to account for additional knowledge,
experience, and other skills that may help their performance on causal
reasoning tasks.

146 A basic sample size of 88 was com-
puted based on recommendations from
Keppel (1991, p. 74) of at least 44 par-
ticipants per group for medium 0.6 ef-
fect size, a power of 0.8, and an alpha
level of 0.05. Recommendations from
other authors ranged from 40 to 60 per
group. Therefore, a choice was made
to consider 50 participants per group
an acceptable value, which makes 100
participants the minimum sample size
for the experiment.
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Assumptions

As with all other statistical analysis tests, Logistic Regression has some
requirements to be met:

o The response (criterion) variable has to be dichotomous (has only
two values). For this example, the response variable is dichotomous
by design. Therefore, this assumption is verified.

o The groups (categories) are mutually exclusive, meaning that one case
can only be in one of the groups. The random assignment of partic-
ipants to one of the treatment groups, either control or treatment,
and only one group, verifies this assumption.

Analysis

The data file has been prepared beforehand to include, from the more
than 60 variables in the raw data set, only variables that may be relevant
to this analysis. So, first, let’s familiarize with the data. Table 25 shows

the first few data rows.

ids case year group pk score
7 1 1 1 6 0

9 1 1 1 12 1
10 1 1 2 8 0
11 1 1 1 11 0
12 0 1 2 6 0
14 1 1 2 14 0

The variables of interest are group, score, and year. A first step in the
analysis is to convert the variables into factors'4”. For this purpose two
new variables, groupf and yearf will be added to the data set, represent-
ing group and year as factors. Once this step has been performed, it is
time to define the model. The research question being investigated here
asks if the treatment (practice of self-explanation) affects, on average,
performance on causal reasoning tasks. Therefore, the model will look
at how performance (DV) represented by the variable score is related to
the predictor group. The variable year is introduced to account for the
potential effect of the year in medical school'8. A summary shows the
count of records (frequencies) for each category for each of the predictors
converted to factors.

Group (1=Control Group, 2=Treatment Group)

1 2
61 56

Table 25: Logistic regression data

147 In R, logistic regression analysis re-
quires the predictors to be defined as
factors.

148 First or second year students.
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Variable Values Description
Treatment Group 0 Control group (recoded as 1 in
original dataset
1 Treatment group (recoded as 2
in original dataset
Year of Study 0 First year medical students

(recoded as 1 in original dataset
1 Second year medical students

(recoded as 2 in original dataset

Year of Study (1=First Year Students, 2=Second Year Students)

1 2
44 73

For the analysis, R'* converts the predictors (factors) to values of 0
and 1. For the current analysis and data set, the recoding (or dummy
coding? as it is sometimes known) is performed as shows in Table 26.

The logistic regression equation and the model we start this analysis
with is:

logit(p) = Bo + B1 - group + Bz - year + f3 - group x year

151

In this model group and year are the main effects " while the term

t152.

group X year represents the interaction effec Let’s look at how a

summary of this model looks like.

Call:
glm(formula = score ~ groupf + yearf + groupf * yearf, family = binomial,
data = logReg)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.394 -0.992 -0.781 0.975 1.634

Coefficients:
Estimate Std. Error z value
(Intercept) -0.9445 0.4454 -2.12
groupf2 -0.0852 0.6854 -0.12
yearf2 0.4925 0.5615 0.88
groupf2:yearf2 1.0336 0.8376 1.23
Pr(>lzl)
(Intercept) 0.034 *
groupf2 0.901
yearf2 0.380

groupf2:yearf2 0.217

Signif. codes:
0 '#*kx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 159.10 on 116 degrees of freedom
Residual deviance: 148.74 on 113 degrees of freedom

AIC: 156.7

Number of Fisher Scoring iterations: 4

Table 26: Logistic regression pre-
dictor (factor) recoding

149 Other statistical analysis packages,
such as SPSS, perform a similar con-
version.

150 Is the process of recoding a categor-
ical variable with 2 or more levels into
a binary variable (categorical variable
with only 2 levels), with values 0 and
1, variable known as dummy variable.

151 The effect of each variable taken in-
dividually on the response (DV) vari-
able.

152 The combined, simultaneous, effect
of the two variables taken together.
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Looking at the output above, it can be noted that the name of the
variables in the left column is accompanied by a value. That is because

R153 converts the predictors in a process known as dummy or treatment

154 variables (see Table 26 as well)

coding. It creates a set of dichotomous
where each level of the predictor is contrasted to a predefined reference
level chosen to be as one of the values of the respective predictor variable.
In this analysis the variables have only two levels, therefore the process
consists of choosing a reference level as one of the two values. In this case
the value 1 (representing the control group) is selected as the reference

2155 in the output indicates that the treatment group

level. The value
(represented by the value 2 in the original dataset) is contrasted to the
reference level, the control group. If the predictor has more than two
levels, one of the levels will be chosen as reference level and two or more
dichotomous variables will be generated for the remaining levels, that
contrast each of them with the reference level. Each of these levels will

be entered as a separate factor in the output.

The analysis of the full model shows that there may be no significant
main effects or interaction effects. Nevertheless, further analysis can be
conducted to learn if there may be a model that, using only a subset of
the variables, may show significance. For this purpose a stepwise logistic
regression can be conducted.

Similar to multiple linear regression, the stepwise analysis can be
conducted either forward or backward. The forward approach starts with
a blank model and enters each term one at a time, computes the model,
and compares it against the previous one. The process will continue
as long as the difference in predictive power between the more complex
model®® and its predecessor is significant. Once it finds an insignificant
gain in predictive power, the process stops. The backward approach looks
at things in reverse. It starts with the full model and starts removing
variables in decreasing order of their contribution to total variance.

For this specific case, considering that we started with the full model'5”
we’ll use the backward approach. The output of this model suggests that
a more parsimonious model exists. It includes only the main effects and
shows significance for year and the model’s constant'®8. An ANOVA
analysis conducted between the competing models shows which factor(s)
were eliminated.

Start: AIC=156.7
score ~ groupf + yearf + groupf * yearf

Df Deviance AIC
- groupf:yearf 1 150 156
<none> 149 157

Step: AIC=156.3
score ~ groupf + yearf

153 Other statistical analysis software
application perform the same conver-
sion.

154 Dichotomous variables have only
two values

155 1n the output R uses the values of
original variables 1 and 2 and not the
internal values of 0 and 1 it uses for
analysis. This is because while the
analysis uses numbers, the output can
use strings to provide more informa-
tion, if the data was collected and en-
tered with string labels or values.

156 Has more variables than the previ-
ous one.

157 Known as enter model, in which
case all terms of the model are entered
at the beginning.

158 The (Intercept) line of the output.
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Df Deviance AIC

<none> 150 156
- groupf 1 163 157
- yearf 1 156 160
Call:

glm(formula = score ~ groupf + yearf, family = binomial, data = logReg)

Deviance Residuals:
Min 1Q Median 3Q Max
-1.319 -1.061 -0.705 1.042 1.739

Coefficients:
Estimate Std. Error z value
(Intercept) -1.264 0.393 -3.22
groupf2 0.608 0.389 1.56
yearf2 0.984 0.416 2.37
Pr(>lzl)
(Intercept)  0.0013 *x
groupf2 0.1181
yearf2 0.0180 =*

Signif. codes:
0 '"x*x' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 159.10 on 116 degrees of freedom
Residual deviance: 150.28 on 114 degrees of freedom

AIC: 156.3

Number of Fisher Scoring iterations: 4

So let’s look at what the ANOVA output tells us.

Step Df Deviance Resid. Df

1 NA NA 113

2 - groupf:yearf 1 1.539 114
Resid. Dev  AIC

1 148.7 156.7

2 150.3 156.3

The ANOVA analysis shows that when the interaction factor was
eliminated, the model’s AIC has improved slightly, effectively making
this more parsimonious model a better predictor for the response variable
than the full model. To interpret the results we need to look again at
the generic equation of the logistic regression:

logit(p) = Bo + 1 - group + B2 - year + B3 - group x year

From the logistic regression output, the 8 coefficients in the logistic
regression equation are found in the Estimate column. Therefore, with
values, the equation becomes:

logit(p) = —1.264 + 0.6084 - group + 0.9836 - year

The odds ratio computed for each of the parameters are indicators of
the odds of performing better (answering correctly) versus the odds of

101
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performing worse (answering incorrectly) is increased or decreased by a
factor indicated by the value of the odds ratio. The direction is pro-
vided by the sign of the raw estimated (8 coefficient. If the coeflicient
is negative, the odds are decreased by the computed value while if the
coefficient is positive, the odds are increased by the value of the odds
ratio.

The odds ratio for group:

group odds ratio = %% = 1.84

Therefore, holding the year of study constant, being in the treatment
group'®? increases the odds of preforming better rather than worse by
a factor of 1.84. That is, being in the treatment group!6? increases by
84% the the odds of a better performance score than by being in the
control group.

The odds ratio for year:

year odds ratio = >93¢ = 2,67

This suggests that, holding the treatment constant, being a second
year'®l medical student increases the odds of performing better rather
than worse by a factor of 2.67, meaning second year medical students

see a 167% increase in odds for a better performance score.

This concludes the logistic regression analysis test. Nevertheless, ev-
ery statistical test is run in the contexrt of a study and once the results
are know, they should be interpreted in that contexrt. Next section, while
not relevant to the application of the Logistic Regression analysis, is
intended to offer insights in how the results of the analysis may be in-
terpreted in the context of the study.

Additional Analysis - TL/DR

The results of the analysis so far are mixed, showing that the treatment
itself, while still included in the equation, does not show a significant
main effect in the overall sample. Let’s look at some of the elements
that may have impacted the results, additional information about the
study’s design, and how these affect data analysis.

First, given the population of students at the medical school was rel-
atively small and considering the expected percentage of respondents,
second year medical students offered an insufficient participant pool.
Therefore, based on the timeline of the study and the curricula at the

159 Indicated by the number 2 at the
end of the variable name in the logistic
regression output.

160 Participants in the treatment group
were prompted to use self-explanation
to help improve score.

161 Indicated by the number 2 at the
end of the variable name in the logistic
regression output.
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medical school, which ensured that the participants had sufficient knowl-
edge of relevant domains, a decision was made to include first year med-
ical students as well.

Second, the literature and prior pilot studies suggested that prior
knowledge in domains relevant to the practice and test questions mat-
ters. Therefore, the study included both a subjective measure of prior
knowledge, as a self-evaluation assessment reported by the participants,
and a more objective, though brief, evaluation of the participants’ prior
knowledge using multiple choice questions. Including first year medical
students offered a chance to better understand the effects of prior knowl-
edge as it is expected this prior knowledge to be less extensive than that
of second year medical students.

With this new knowledge, the model that has been presented thus
far can be extended to account for the effects of prior knowledge while
controlling for the year of study. By introducing prior knowledge in the
regression equation, the model selected included an interaction between
prior knowledge and treatment group which suggests that the treatment
works differently for different levels of prior knowledge.

The existence of an interaction term is relevant because the interpre-
tation can no longer be conducted for each individual predictor while
holding the others constant as explained for an interpretation of a logis-
tic regression showing only main effects. In this case, the interpretation
covers multiple simple regression equations, for each level of the predic-
tors that are part of the interaction term. For example, consider the

following regression equation!62:

logit(p) = Bo + B1 - group + Pa - pk + B3 - group x pk + B4 - year

The interaction term is represented by group x pk. For this equa-
tion, analysis can be conducted for the two levels of the group (0 =
control group, 1 = treatment group), by entering the values 0 or 1 into
the equation. This will produce the following two regression equations,
which only include main effects and can be interpreted as described
before.

For group = 0 (control group):

logit(p) = Bo + B2 - pk + B4 - year

The interpretation will now discuss the odds ratio of prior knowledge
to affect the response variable for the participants in the control group
only.

162

pk = prior knowledge

103
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For group = 1 (treatment group):

logit(p) = Bo + B1 + B2 - pk + B3 - pk + B4 - year

Which can be further reduced to:

logit(p) = (Bo + B1) + (B2 + B3) - pk + B4 - year

The resulting equation is interpreted only in the context of the treat-
ment group and can look a the odds ratio for the levels of the prior
knowledge predictor to influence the response variable.
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